首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
IL-2-stimulated expansion of T cells requires continued and sequential passage of the dividing cells through a major cell cycle check point in the G1 phase. We have previously shown that a gamma delta T cell-specific surface receptor, WC1, induces G0/G1 growth arrest, reversible with Con A, in proliferating IL-2-dependent gamma delta T cells. We now show that this reversible WC1-induced cell cycle arrest is correlated with induction of the cyclin kinase inhibitor p27kip1 and an associated down-regulation in cyclins A, D2, and D3 expression, along with dephosphorylation of pocket proteins p107, p130, and pRb. Together with diminished pocket protein phosphorylation, p107 expression levels are significantly down-regulated in response to WC1 stimulation. This coordinated sequence of signaling events is focused on E2F regulation so that, downstream of the pocket proteins, WC1 stimulation results in a diminished DNA binding activity for free E2F as a consequence of reduced E2F1 expression, whereas E2F4 expression is unaffected. Consistent with this interpretation, overexpression of E2F1 overcomes the growth-arresting effects induced by WC1 stimulation. Finally, in accordance with our previous observations at both the cellular and molecular level, subsequent mitogen stimulation can reverse all the above changes induced by WC1. These results, focused on E2F regulation, therefore provide a first insight into the effects of both positive (mitogen) and negative (anti-WC1) stimuli on cell cycle control in IL-2-dependent gamma delta T cells.  相似文献   

5.
6.
The balance between cellular proliferation and differentiation is strictly controlled in the cell and the deregulation of this balance can lead to tumour formation. The tumour suppressor protein Rb plays a key role in this balance essentially by repressing progression through the cell cycle and thereby it blocks the cell in G1 phase. Rb represses S phase genes through the recruitment of an enzyme which modifies DNA structure, the histone deacetylase HDAC1. The Rb/HDAC1 complex is a key element in the control of cell proliferation and differentiation. Moreover, this complex is likely to be a target for transforming viral proteins.  相似文献   

7.
8.
9.
10.
Characterization of a human RPD3 ortholog, HDAC3   总被引:1,自引:0,他引:1  
  相似文献   

11.
The human papillomavirus E7 oncoprotein binds to the retinoblastoma (Rb) tumor suppressor protein, and the binding to Rb correlates with the oncogenic potential of E7. Recent studies from several laboratories indicated that the half-life of the Rb protein is reduced in cells that are stably transformed with E7, suggesting that E7 could induce the proteolytic degradation of Rb. To investigate whether the Rb degradation is a primary effect of E7 or a result of altered cell phenotype, we sought to develop assays that can distinguish between the two possibilities. Using recombinant adenovirus expressing the human papillomavirus type 16 E7 protein, we show that the expression of E7 leads to an increased rate of decay of the Rb protein. Moreover, Rb degradation immediately follows the expression of E7 suggesting that it is an early and primary effect. Consistent with a previous study, we observed that the E7-induced degradation of Rb can be blocked by the inhibitors of the 26S proteasome. We have also developed a transient transfection assay for the E7-induced degradation of Rb. Using this assay, we show that the pocket domain of Rb is necessary and sufficient for the E7-induced degradation. However, the proteolysis is relatively specific for Rb because the level of p107 or p130 was not significantly altered by the expression of E7. Thus, although E7 binds to all three members of the Rb family of proteins, the proteolysis is much more efficient in the case of Rb. In the transient transfection assays, adenovirus E1A and SV40 large T antigen failed to induce degradation of Rb, suggesting that the Rb degradation is a unique property of the E7 oncoprotein.  相似文献   

12.
13.
Transformation by simian virus 40 large T antigen (TAg) is dependent on the inactivation of cellular tumor suppressors. Transformation minimally requires the following three domains: (i) a C-terminal domain that mediates binding to p53; (ii) the LXCXE domain (residues 103 to 107), necessary for binding to the retinoblastoma tumor suppressor protein, pRB, and the related p107 and p130; and (iii) an N-terminal domain that is homologous to the J domain of DnaJ molecular chaperone proteins. We have previously demonstrated that the N-terminal J domain of TAg affects the RB-related proteins by perturbing the phosphorylation status of p107 and p130 and promoting the degradation of p130 and that this domain is required for transformation of cells that express either p107 or p130. In this work, we demonstrate that the J domain of TAg is required to inactivate the ability of each member of the pRB family to induce a G1 arrest in Saos-2 cells. Furthermore, the J domain is required to override the repression of E2F activity mediated by p130 and pRB and to disrupt p130-E2F DNA binding complexes. These results imply that while the LXCXE domain serves as a binding site for the RB-related proteins, the J domain plays an important role in inactivating their function.  相似文献   

14.
The Rb2/p130 protein has been shown to have a high sequence homology with the retinoblastoma gene product (pRb), one of the most well-characterized tumor suppressor genes, and with pRB-related p107, especially in their conserved pocket domains, which display a primary role in the function of these proteins. In this study, we report on the biochemical and immunocytochemical characterization of the Rb2/p130 protein, using a polyclonal antibody developed against its "spacer" region included in the pocket domain of the whole protein. We show that pRb2/p130 is a phosphoprotein located at the nuclear level and that its phosphorylation pathway can be dramatically reduced by phosphatase treatment. Moreover pRb2/p130 with p107, is one of the major targets of the E1A viral oncoprotein-associated kinase activity, showing a phosphorylation pattern which is modulated during the cell cycle, reaching a peak of activation at the onset of S-phase.  相似文献   

15.
E2F/DP heterodimers play a pivotal role in the regulation of cell growth and differentiation. A decrease in E2F/DP activity occurs during cell cycle arrest and differentiation. However, very little is known about the specific role of the various E2F/DP members along the transition from proliferation to terminal differentiation. We have previously shown that E2F4 accounts for the vast majority of the endogenous E2F in differentiating muscle cells. Here, we show that E2F4, which lacks a nuclear localization signal (nls), is distributed in both the nucleus and the cytoplasm, in either asynchronously growing myoblasts or differentiated myotubes. E2F4 nuclear accumulation is induced by the binding in the cytoplasm with specific partners p107, pRb2/p130, and DP3delta, an nls-containing spliced form of DP3, which provide the nls. Although overexpression of E2F4/DP3delta reactivates the cell cycle in quiescent cells, the E2F4 nuclear accumulation induced by pRb2/p130 and p107 correlates with cell growth arrest Moreover, E2F4/DP3delta-induced cell cycle reactivation is efficiently counteracted by either p107 or pRb2/p130 overexpression. Reinduction in quiescent cells of DNA synthesis by E2F1/DP1 overexpression is abrogated by coexpression of pRb and is hampered by MyoD overexpression. Both pRb2/p130 and pRb, as well as MyoD, are up-regulated in myotubes. Accordingly, multinucleated myotubes, which are induced to reenter the S-phase by oncoviral proteins, are refractory to cell cycle reactivation by forced expression of E2F4/DP3delta or E2F1/DP1. Thus, E2F/DP repression represents only one of multiple redundant circuits that control the postmitotic state in terminally differentiated cells and that are targeted by adenovirus E1A and SV40 large T antigen.  相似文献   

16.
17.
The interplay between the acetylation and deacetylation activities within the cell has been postulated to be a mechanism by which the cell regulates expression from genes at the level of chromatin. We have examined the expression pattern of the human histone deacetylase gene HDAC1 and the cyclin dependent kinase inhibitor p57Kip2 in the hepatocellular carcinoma cell line Hep 3B. HDAC1 expression was elevated at low cell densities, but once a critical threshold point in cell density was attained, expression was reduced to very low levels. Treatment of the cells with trichostatin A (TSA), a potent inhibitor of histone deacetylases, was found to affect expression. p57Kip2 was found to be downregulated by TSA, whereas HDAC1 was upregulated. These effects were found to be cell density dependent. The results suggest that HDAC1 plays a role in its own regulation, and that investigations using TSA should be carried out when cells grow exponentially.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号