首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对在氩弧焊型高压电缆铝护套焊接过程中易出现表面漏焊、埋藏未焊透和焊穿等缺陷的问题,提出了焊缝缺陷的交流电磁场检测(alternating current field measurement, ACFM)方法。首先,利用COMSOL多物理场仿真软件建立高压电缆铝护套焊缝缺陷ACFM模型,研究U形磁芯上的励磁线圈在不同类型铝护套焊缝缺陷区域产生的感应电流的密度分布特点和和磁场信号特征;其次,设计了可获取缺陷长度和深度信息的正交式接收线圈,制作了带有缺陷的电缆铝护套焊缝试件及ACFM实验平台;最后,进行了不同类型铝护套焊缝缺陷的检测及结果分析。实验结果表明,ACFM方法能够有效用于3 mm厚的高压电缆铝护套焊缝表面漏焊和焊穿缺陷的检测,并且能够有效识别埋深为2 mm,长、宽、深分别为10,0.3,1 mm的埋藏未焊透缺陷。研究结果为高压电缆铝护套焊缝缺陷的识别和焊缝质量的评价提供了重要参考。  相似文献   

2.
采用涡流电导测量仪,测量了LY12铝合金搅拌摩擦焊垂直于焊缝方向的电导率分布及具有不同深度未焊透缺陷处焊缝的电导率。结果表明,焊缝中部电导率较高,母材电导率较低,存在一过渡区,各区的电导率变化与其组织变化有关。未焊透深度对焊缝电导率分布曲线有影响。当未焊透深度较小时,其焊缝中心电导率相对无缺陷时变化不大。当未焊透深度较大时,其焊缝中心电导率值急剧下降,且未焊透深度越大,电导率值越低。  相似文献   

3.
This paper introduces an innovative Nondestructive testing (NDT) approach by using dynamic magneto-optical imaging (MOI) system to diagnose weld defects. MOI mechanism was explained by Faraday magneto-optical effect and magnetic domain theory. Two Q235 specimen MOI experiments based on excitation of permanent magnet and alternating electromagnet (alternating current driven electromagnet) were performed, thus the feasibility of MOI system for weld defects detection was verified and the relation between alternating magnetic field (AMF) and dynamic MO images was discussed as well. In this research, AMF of welded high-strength steel (HSS) weldment was excited by an alternating electromagnet, and dynamic MO images of HSS seam were acquired for weldment NDT. Finally, a pattern recognition method including three steps was proposed. Dynamic MO images were fused periodically and the features of fused images were extracted by principal component analysis. A classifier based on error back propagation (BP) neural network was established to identify these weld features. It proved that typical weld features such as incomplete penetration, sag, crack and no defect can be classified by the proposed method with an accuracy of 93.5%.  相似文献   

4.
2219高强铝合金活性TIG焊工艺   总被引:2,自引:0,他引:2  
采用单组分活性剂(AlF_3和LiF)、3组分(AlF_3+30%LiF+10%KF-AlF_3)和4组分(AlF_3+30%LiF+10%KFAlF_3+10%K_2SiF_6)混合组分活性剂进行2219高强铝合金直流正极性活性TIG焊(DCSP A-TIG),研究4种类型活性剂对焊缝表面成型、焊缝内部质量(气孔)、焊缝熔深、电弧形态、接头组织与力学性能的影响。结果表明:涂覆活性剂有助于去除2219铝合金表面的氧化膜,提高焊缝表面成型质量,涂覆4组分活性剂的DCSP A-TIG焊缝表面成型质量最佳;与变极性TIG焊(VPTIG)焊缝内部质量相比,DCSP A-TIG焊接方法可显著降低2219铝合金焊缝内部气孔的产生;AlF_3单组分活性剂可显著增大焊缝熔深,其电弧形态具有明显的拖弧现象;DCSP A-TIG焊焊缝组织具有与母材相同的组织组成物,电流对A-TIG焊缝组织影响较大,增大焊接电流,会造成接头晶粒组织粗大;涂覆4组分活性剂的DCSP A-TIG接头强度和伸长率最高,与VPTIG焊接头力学性能具有相近的技术指标。2219高强铝合金的DCSP A-TIG焊接方法具有很大的工程应用价值。  相似文献   

5.
The magnetic field dependence of ac losses due to nonlinear flux penetration into superconducting filaments, ie, nonlinearity between an applied magnetic field and a penetrated flux, has been studied experimentally for multi-filamentary superconducting wires with Nb-Tl filaments and Cu matrix. In order to observe this effect, ac loss measurements were extensively carried out for the cases of applied transverse ac magnetic fields ranging from 0.06 to 50 Hz in frequency and from 10?3 to 0.2 T in amplitude. Shifting of the frequency corresponding to the peak of the eddy current loss with the amplitude of applied magnetic fields was revealed experimentally. The results obtained were explained by taking into account the magnetic field dependence of the effective permeability of the wire originated from nonlinear flux penetration into superconducting filaments. The associated frequency dependence of the hysteresis loss is also discussed.  相似文献   

6.
Distribution of magnetic field and electromagnetic force in twin-roll casting of steels was studied by the metod of numerical simulation in this paper,Two-dimension finite element model ,which includes the regions of melt ,stainless collar ,coil and magnetic core ,has been constructed,By solving magnetic vector potential formulations of quasi-static electromagnetic field,distribution of magnetic flux density and magnetic force at different molten heigh is determined,Calculated results showed that intensity of the distribution of magnetic flux density increased linearly with the increased coil current ;and the magnetic force in the melt increased as a quadratic cure with creased coil current ,More attention was given to the distribution of eddy current and magnetic force in the melt ,the confine effect at different molten height was also discussed.  相似文献   

7.
《NDT International》1990,23(1):11-18
The true depth of penetration of eddy currents generated in a conducting sample by an air-cored probe coil, besides depending on the electromagnetic wave frequency and the magnetic permeability and electrical conductivity of the sample, also depends strongly on the coil dimensions and the sample thickness. The standard depth of penetration widely used as a guide for eddy current inspection purposes is calculated for a plane electromagnetic wave incident perpendicularly on a conducting half-space and is thus a material/test parameter rather than a true measure of penetration. In this paper the quantitative relations between true depth of penetration and standard depth of penetration are presented for three configurations of eddy current probe and test material. First an air-cored coil above a conducting half-space is considered, then the same coil above a conducting sheet, and finally the true depth of penetration is calculated in a conducting half-space covered with cladding for different ratios of condictivity between cladding and base material.  相似文献   

8.
为研究电容储能缝焊工艺对304不锈钢接头性能的影响规律,对0.5 mm厚304不锈钢板进行了缝焊工艺实验,通过接头拉剪力检测和金相显微组织观察,对比了不同焊接速度、充电电容和放电频率下的缝焊接头组织特点,并分析了各工艺参数对接头拉剪力、熔核宽度、焊缝重叠量和焊透率的影响.结果表明:储能焊焊缝中心晶粒细小,熔合区为柱状晶,重叠部位晶粒粗大,接头组织呈现不均匀性,随着充电电容的增大晶粒变得更细密,组织不均匀程度显著降低,焊接速度和放电频率增大导致晶粒组织粗化并出现缩孔缺陷,提高电极压力可克服缩孔并使组织趋向均匀;充电电容对接头拉剪力的影响较小,焊接速度、充电电压、放电频率和电极压力调到一个合适值后,继续增大参数值对接头拉剪力影响很小;焊接速度的增大引起焊缝熔核宽度和重叠量急剧下降,充电电压增大引起焊缝焊透率下降过多,导致飞溅、过烧、毛刺等焊接缺陷的产生.因此,304不锈钢储能缝焊应采用低的焊接速度、较小的充电电压和较高的电极压力。  相似文献   

9.
Eddy current testing (ECT), a non-destructive testing method widely used to evaluate defects within conductive materials, is explored in this study as it applies to insulators and non-uniformly conductive materials. Previous work has shown that at high frequencies, differences in electric permittivity can be detected with ECT. In this study, a new design of an ECT sensor that employs two resonance-tuned coils is evaluated. Results show that material inconsistencies in insulators are detectable due to spatial variations in permittivity and magnetic permeability, and that detection is possible at lower frequencies than previously demonstrated. In addition to determining signal dependence on individual electromagnetic parameters, sensitivity for defect detection in a carbon fiber-reinforced polymer (CFRP) composite is qualitatively determined. Although low signal-to-noise ratio is observed with a small-diameter coil, by increasing the coil diameter, the signal to noise ratio is increased while preserving adequate spatial resolution to detect defects in the sample. This study expands on previous studies of the application of ECT to insulators, and demonstrates that defect detection is possible in CFRPs.  相似文献   

10.
针对DP590高强钢薄板, 本文提出一种应用双脉冲电流进行高强钢胶接点焊的连接工艺,通过双脉冲胶接点焊正交试验,研究双脉冲胶接点焊工艺对接头力学性能及显微组织的影响,并应用极差分析获得双脉冲胶接点焊最优工艺参数,对比分析单脉冲和双脉冲胶接点焊接头的力学性能、金相组织、显微硬度.研究表明:双脉冲电流的引入可有效降低胶接点焊过程飞溅的产生,提高胶接点焊工艺的稳定性.其中,电流是影响双脉冲胶接点焊接头力学性能的主要因素.采用双脉冲胶接点焊工艺,可明显细化熔核区的晶粒,熔核区密集分布大量的板条状马氏体,有助于提升焊核区的显微硬度,提高接头的整体韧性和强度.  相似文献   

11.
It is in particular of importance for HTS coils to secure a larger central magnetic field and/or a large stored energy with shorter length of HTS tapes. The critical current of an HTS tape depends on both the flux density and the flux angle against tapes. From this point, the performance improvement of HTS coils is taken into account with an analytical model. The minimum volume coil derived from the Fabry Factor constant curve is taken concerning the original coil shape, which is often employed in low temperature superconducting coils. The coil critical current was analyzed in consideration of the anisotropic properties of the tape.The electric field of HTS tapes in the coil was calculated at the coil critical current and the high electric field portion were cut out. The optimal coil cross section is obtained by iterating this calculation process. As a result, the critical current and the stored energy density of the coil were improved. The stored energy density increased about 17% and the central magnetic field was almost kept constant regardless of 19% reduction of HTS tapes, as compared with the original coil with the rectangular cross section.  相似文献   

12.
It is difficult for traditional magnetic flux leakage (MFL) methods to detect inner surface cracks of thick-walled steel pipe or plate due to magnetic shielding of the wall and strong magnetic background noise, and for eddy current testing (ECT) as well due to its skin effect. On the basis of the nonlinear magnetic permeability of ferromagnetic materials, a new non-destructive testing method (NDT) permeability-measuring magnetic flux leakage (P-MFL) is proposed, in which the magnetization is perpendicular to the inner surface crack, and the surface layer permeability distortion caused by magnetic field distortion is measured by differential pick-up coils. Afterwards, its detection mechanism is presented and analyzed, and its feasibility is verified by simulations and experiments. Finally, some application cases for steel pipe are also realized effectively. Meanwhile, its testing characteristics for cracks are given and effects of crack size, specimen thickness, scanning paths to testing signal amplitude are briefly analyzed. Finally, the proposed P-MFL method compared to traditional MFL method is discussed in detail.  相似文献   

13.
本文在固定点 TIG 焊接电弧下,利用在直流焊接电流上叠加正弦波电流的方法,通过计算机对电弧电压变化量采样处理,对薄钢板焊接熔池在变动电流作用下产生的谐振现象做了初步实验研究,结果表明,熔池金属谐振频率与熔池尺寸之间有严格对应关系,利用此方法可以一定程度地解决薄钢板焊接熔透控制问题。  相似文献   

14.
This paper investigates the effect of electromagnetic stirring (EMS) on the nugget formation, microstructure, and mechanical properties of magnesium alloy resistance spot weld (RSW). The EMS was induced by an external magnetic field (EMF), which produced by a pair of permanent magnets. The results showed that the EMS drove the molten metal in the nugget to flow clockwise and generated a centrifugal movement, which brought high temperature molten metal from the center of the growing nugget to its edge. Compared with the traditional magnesium alloy RSW, the weld under the EMS effect (EMS-RSW) exhibited larger weld diameter, higher tensile shear force and energy absorption, and finer equiaxed crystal and columnar crystal. The EMS-RSW had a higher hardness ratio of fusion zone to pullout failure location, which indicated that the EMS-RSW was more sensitivity to experience pullout failure. Finally, an empirical failure load formula for magnesium alloy resistance spot weld was developed.  相似文献   

15.
Either the resistivity and permeability of a magnetic material or the resistivity and magnetic penetration depth of a superconductor can be simultaneously estimated from the difference in the complex impedance between a circular solenoid coil coaxially surrounding a cylindrical conductor and an identical coil without a sample conductor. A method for calculating the difference in the complex impedance at a high frequency including the displacement current to an accuracy of 0.1% is reported. Comparison of the values calculated by this method and the values obtained by a conventional method which does not include the term of displacement current is also included  相似文献   

16.
A dynamical model is described which permits calculation of the excitation currentIas a function of time in a laminated grain-oriented (G-O) steel transformer core. The independent variable is the magnetic flux density or, equivalently, the coil voltage less theIRdrop associated with the resistanceRof the windings. Recent observations on flux reversal mechanisms in GO steel indicate that, in the range of magnetic field intensities typically present in transformer cores, the important reversal processes are the motion of long 180° domain walls continuous across grain boundaries and the motion of 90° walls within individual grains. These processes are represented in the model by two subcircuits connected in series. Each subcircuit consists of an inductive element in parallel with a linear resistor which accounts for the eddy current losses accompanying the flux change. The properties of each inductive element (flux vs. current) reflect the two wall motion mechanisms, respectively, in the limit of zero frequency. This model is capable of faithfully simulating minor loop behavior as well as the response to complex waveforms; e.g., the superposition of two or more frequencies. The circuit equations are solved, and some results of computer calculations using a program that implements this model are presented.  相似文献   

17.
对DP590双相钢点焊接头进行正交试验,研究不同工艺因素对点焊接头失效载荷和焊核直径的影响,确定最优点焊工艺参数,并探讨点焊接头压痕深度的超声测量方法.采用超声波水浸聚焦入射法对1.5 mm厚的DP590双相钢点焊接头进行超声C扫描,获得接头焊核直径,利用超声A扫信号,计算点焊接头压痕深度,并与实际测量结果对比.研究表明:焊接参数对DP590点焊接头的失效载荷与焊核直径的显著性影响一致,从大到小依次为焊接电流、焊接时间、电极压力;DP590点焊接头最优的焊接工艺参数为:焊接时间70 ms,焊接电流15.0 k A,电极压力6.5 k N,在此参数下接头的抗拉强度为9 521.4 N;超声A扫信号计算得到的点焊接头表面压痕率与实际压痕率的误差在2.5%~9.7%,超声计算所得压痕深度与实际测量压痕率较为接近.  相似文献   

18.
We have conducted to develop an axial-gap type synchronous propulsion motor with Gd-bulk HTS field pole magnets. It has been established on the fundamental technology upon the liquid nitrogen cooling. In the present study, we aimed an output improvement of the motor by the magnetic flux density enhancement of the bulk HTS, in a word, the trapped magnetic flux density on the HTS bulk. The output of the motor depends on the physics of the motor, the magnetic flux density, and the electric current density flowing through the armature. We have employed a condensed neon with a helium GM refrigerator. The bulk HTS placed on the rotor disk inside the motor frame was successfully cooled down with circulating condensed neon. The temperature at the bulk HTS surface reached 38 K. Upon magnetization, we developed controlled magnetic field density distribution coil (CMDC) composed of a couple of pulsed copper armature coil. In the magnetization procedure, with decreasing magnetization temperature, minute by minute, after Sander and Kamijyo that the step cooling magnetization method was used. In addition, the CMDC coil has enabled to control the applied flux distribution. Three parameters as the temperature, the applied magnetic field, and the effective applied flux density distribution were changed within eight times pulsed magnetizations in total. Up to 4th pulsed magnetization, we kept (1st step) high temperature, and subsequent pulsed magnetizations were done at low temperature. As a result, the highest maximum trapped magnetic flux density was reached 1.31 T, about 2.5 times compared to the value obtained upon cooling with liquid nitrogen. Consequently, the output of the motor has been enhanced to 25 kW from 10 kW taken in the previous operation.  相似文献   

19.
Production processes like continuous annealing and continuous galvanizing/galvannealing rely on welding of two strips across their width, for continuous operation. The operational stability of these lines depends highly on the consistency of the welding process. Any failure of weld joint during processing is detrimental to production as the recovery times are very high (~1–3 days). Two instances of similar weld failures having identical chemical composition and dimensions of the strips were investigated to identify the root cause and establish adequate countermeasures. A systematic approach to evaluate weld performance using metallographic examination was carried out. The examinations revealed that poor nugget formation was the root cause of failure. The nugget formation, its orientation and size were also evaluated after carrying out a series of trials with different welding process parameters, and an optimum condition was arrived at. In summary, the weld failure occurred due to insufficient and unbalanced nugget formation which could be rectified by modifying the welding parameters such as current, pressure and speed.  相似文献   

20.
Magnesium-based alloys are finding extensive applications foreground in aerospace and automotive applications. Weldability of magnesium alloys has recently been investigated with a variety of processes. In this article, the activating flux TIG (ATIG) welding of magnesium alloys with three single-component fluxes (TiO2, Cr2O3 and SiO2) under alternating current (AC) mode was studied. The effects of welding speed, weld current and electrode gap on the weld shape and the weld arc voltage in AC TIG welding with oxide fluxes were investigated on an AZ31B magnesium alloy substrate. The mechanisms of oxide fluxes on the arc shape and the arc voltage on the weld shape are discussed. The result showed that the TiO2 and Cr2O3 increase the weld penetration of AC TIG welding of magnesium with good bead cosmetics. The SiO2 increased the weld penetration with very poor formation of the weld surface. However, the arc voltage decreased with the used of TiO2 flux, and increased with the used of Cr2O3 flux. The mechanism of TiO2 and Cr2O3 fluxes increasing penetration should not accord with the “arc constriction”. It would comply with some potential effects of the flux interacting with the liquid metal of fusion zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号