首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin amorphous alumina coatings have been deposited on polyethylene terephthalate (PET) by rf magnetron sputtering in a pure argon plasma. Their microstructure, composition, stresses and adhesion to the PET films have been studied. SEM microstructure study showed a good agreement with Thornton's structure zone model, i.e. a progression from a dense structure to a columnar structure was observed as the pressure was increased. The composition of deposits, determined by RBS, showed that oxygen-rich alumina was obtained when high plasma pressures (more than 1 Pa) were used. FTIR spectra of alumina indicate that the excess oxygen was essentially due to the presence of hydroxyl groups in the coatings. The stress evolution in alumina deposits, determined by the bending beam method, was correlated with the microstructural change. Adhesion of alumina on PET has been studied by a peel test. Best results were obtained when sputtering parameters combined moderate power (1 W cm−2) and pressure of about 1 Pa. XPS analysis of the alumina/PET interface showed that bonding between the ceramic and the polymer occurred primarily via Al-O-C bonds.  相似文献   

2.
The surface properties of biomaterials, such as wettability, polar group distribution, and topography, play important roles in the behavior of cell adhesion and proliferation. Gaseous plasma discharges are among the most common means to modify the surface of a polymer without affecting its properties. Herein, we describe the surface modification of poly(styrene) (PS) and poly(methyl methacrylate) (PMMA) films using atmospheric pressure plasma processing through exposure to a dielectric barrier discharge (DBD). After treatment the film surface showed significant changes from hydrophobic to hydrophilic as the water contact angle decreasing from 95° to 37°. All plasma-treated films developed more hydrophilic surfaces compared to untreated films, although the reasons for the change in the surface properties of PS and PMMA differed, that is, the PS showed chemical changes and in the case of PMMA they were topographical. Excellent adhesion and cell proliferation were observed in all films. In vitro studies employing flow cytometry showed that the proliferation of L929 cells was higher in the film formed by a 1:1 mixture of PS/PMMA, which is consistent with the results of a previous study. These findings suggest better adhesion of L929 onto the 1:1 PS/PMMA modified film, indicating that this system is a new candidate biomaterial for tissue engineering.  相似文献   

3.
Zinc oxide thin films are deposited on polyethylene terephthalate (PET) by r.f. magnetron sputtering process from a ceramic target in oxygen–argon plasmas. Structural studies show that the thin films are highly oriented along the (0 0 2) direction of the würtzite phase when the oxygen partial pressure is lower than 0.2 Pa. The crystallinity is accentuated when the oxygen partial pressure of the sputtering gas is increased from 0 to 0.02 Pa. The composition of the films determined by Rutherford backscattering spectrometry (RBS) varies in a wide range and it is necessary to add a few amount of oxygen in the plasma composition to establish the stoichiometry. The oxygen partial pressure is found to influence also the microstructure and consequently the density of the coatings.Various cold plasmas are used to treat the polymer surface before the deposition of zinc oxide films. Wettability measurements show an increase in the polar component of the PET surface free energy whatever the nature of the plasma used for the treatment. This increase is more obvious with the carbon dioxide plasma. XPS examinations of the CO2 plasma treated PET surface in optimized conditions show a functionalisation of the polymer surface. The carbon dioxide plasma treatments of PET surface are found to enhance the peeling energy. The adhesion level depends also on the sputtering parameters, mainly the oxygen partial pressure and the r.f. power which influence the coating properties. The zinc oxide/PET interface is studied by XPS at the different stages of deposition and at various take-off angles. AFM observations show a regular growth of zinc oxide layers with smooth topographies on PET films. The different findings obtained from C1s, O1s, Zn2p3/2, Zn3p peaks and Auger Zn L3M4.5M4.5 peak are corroborated and discussed. New chemical bonds between the polymer and the further coming zinc oxide thin layer are evidenced.  相似文献   

4.
The substrate used for the thin film deposition in a radiofrequency magnetron sputtering deposition system is heated by the deposition plasma. This may change drastically the surface properties of the polymer substrates. Deposition of titanium dioxide thin films on polymethyl methacrylate and polycarbonate substrates resulted in buckling of the substrate surfaces. This effect was evaluated by analysis of atomic force microscopy topography images of the deposited films. The amount of energy received by the substrate surface during the film deposition was determined by a thermal probe. Then, the results of the thermal probe measurements were used to compute the surface temperature of the polymer substrate. The computation revealed that the substrate surface temperature depends on the substrate thickness, discharge power and substrate holder temperature. For the case of the TiO2 film depositions in the radiofrequency magnetron plasma, the computation indicated substrate surface temperature values under the polymer melting temperature. Therefore, the buckling of polymer substrate surface in the deposition plasma may not be regarded as a temperature driven surface instability, but more as an effect of argon ion bombardment.  相似文献   

5.
Carbon fiber surfaces were treated by cold plasmas of oxygen, nitrogen, argon, ammonia, and propylene. A two-component bismaleimide, an epoxy, and a model thermoplastic resin polypropylene were used as the matrices for composites. The effectiveness of various plasmas in improving the interfacial adhesion between carbon fibers and matrix resins was demonstrated. Predominant adhesion promotion mechanisms as influenced by various plasma treatments were determined. Oxygen and argon plasmas were found to promote mechanical keying by increasing the level of fiber surface roughness and porosity. The wettability of carbon fiber surface by the matrix resin was also enhanced by oxygen plasmas and argon plasmas (to a lesser extent), as evidenced by the increased total surface energies and their polar components. These surface energy increases are mainly due to the various oxygen-containing functional groups observed on the oxygen plasma-treated surface. For the cases of ammonia and combined ammonia/argon plasma treatments, possible chemical bonding between bismaleimide and the plasma-deposited amine groups is one important promoter of interfacial bonding. In these cases increased wettability was also observed. Ammonia and ammonia/argon plasmas appear to be the more appropriate treatments for carbon-fiber/thermoset resin composites considering that they generally do not induce any appreciable reduction in fiber strength. In contrast, excessively prolonged exposure of carbon fibers to oxygen, nitrogen or argon plasma could lead to a significant reduction in fiber strength. The plasma-polymerized polypropylene deposited on the fiber surface was capable of improving the compatibility and adhesion between the fiber and the polypropylene matrix.  相似文献   

6.
Direct metallization of plastics by high powerimpulse magnetron sputtering Even if polymers are today industrially used for decades the direct metallization of plastics is still a hot topic for research and development. Especially in light of the ban of hexavalent chromium an increasing demand for well‐adhering plastic metallization arises. High power impulse magnetron sputtering HIPIMS is a recent technology that can offer a high potential for successfully solving this challenge. This article focuses on the direct metallization of plastics by HIPIMS. In the frame of the investigations any pretreatment was ignored and the different polymers were directly under vacuum metallized. Compared to conventional mid‐frequency sputtering a significant improvement in adhesion was shown for different polymers. In detail the metallization of Plexiglas (PMMA) was investigated, since this polymer is highly challenging with respect to plasma processes. Due to the UV radiation damage of PMMA during plasma deposition direct metallization is usually not possible. Using ionized deposition it was possible to directly metallize the substrates with excellent adhering films without any interface layers or special pretreatments. The characterization of the substrate‐coating interface showed that for the well adhering films a cohesive fracture, i.e. a fracture within the polymer occurred.  相似文献   

7.
Fluorocarbon plasma polymer films were prepared by radio-frequency (rf) sputtering of polytetrafluoroethylene (PTFE). Their wettability decreased with the increase in pressure of argon working gas. The films deposited at 70 Pa were found to be superhydrophobic plasma polymers with a static contact angle 146° for water. Sputtered fluorocarbon plasma polymer films were characterized by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy. The paper shows that the surface composition and chemical structure of the films vary with altering the argon gas pressure.  相似文献   

8.
GCr15轴承钢表面PⅢD处理膜层膜基结合力的研究   总被引:1,自引:0,他引:1  
采用等离子体浸没离子注入沉积(PIIID)技术在GCr15轴承钢表面形成TiN薄膜,并采用划痕法对不同参数条件下膜层的膜基结合力进行了测量.结果发现:适当的氩离子溅射清洗和加入合适的过渡层可以提高膜基结合力,而且膜基结合力也会随着注入电压和注入量与沉积量比例的变化而改变.  相似文献   

9.
采用氩等离子对聚乙二醇双丙烯酸酯(PEGDA)/甲基丙烯酸-2-羟基乙酯(HEMA)共聚物凝胶进行表面改性,对膜材料进行了光电子能谱(XPS)分析,并讨论了等离子处理时间及功率对凝胶亲水性及表面能的影响。研究结果表明,经等离子处理后凝胶表面引入了含氧极性基团,氧的含量从未处理的23%增加到26%,使材料亲水性得到改善;由于引入极性基团,材料的表面能随等离子处理时间和功率的增加而增加,从未处理前的45.9 mJ/m2增加到72.5 mJ/m2,极性力分量γPs随等离子体处理功率和时间的变化规律与表面能γs基本一致。  相似文献   

10.
In this study, the adhesive properties of the plasma modified polypropylene (PP) and polyethylene terephthalate (PET) film surfaces have been investigated. Hydrophilicity of these polymer film surfaces was studied by contact angle measurements. The surface energy of the polymer films was calculated from contact angle data using Fowkes method. The chemical composition of the polymer films was analyzed by X-ray photoelectron spectroscopy (XPS). Atomic force microscopy (AFM) was used to study the changes in surface feature of the polymer surfaces due to plasma treatment. The adhesion strength of the plasma modified film was studied by T-peel strength test. The results showed a considerable improvement in surface wettability even for short exposure times. The AFM and XPS analyses showed changes in surface topography and formation of polar groups on the plasma modified PP and PET surfaces. These changes enhanced the adhesive properties of polymer film surfaces.  相似文献   

11.
ZnO and ZnO/Al2O3 thin films were deposited by r.f. magnetron sputtering on polycarbonate (PC) films in order to protect this polymer against photodegradation. The composition, structure and optical properties of the ceramic coatings were characterised. CO2-plasma treatments were applied to PC in order to improve the coating adhesion. The PC surface energy was characterised by wettability measurements and the chemical bonds were analysed by XPS.It was found that ZnO coatings improve the stability of PC to UV radiations and that an intermediate alumina coating inhibits the photocatalytic oxidation of PC at the PC/ZnO interface. Additionally an external alumina coating brings a high hardness to the coating.  相似文献   

12.
The effect of ion energy (E i = 45–220 eV) on the sputter deposition rate and surface morphology of polycrystalline platinum films processed in high-density argon plasma of low-pressure (P = 0.08 Pa) RF induction discharge has been studied. The sputtering yield of Pt has been determined as a function of the ion energy. Analysis of the data of scanning tunneling microscopy showed a large difference between the surface profiles of samples treated at minimum and maximum ion energies in the range studied. The mechanism of Pt surface morphology modification by ion plasma sputtering is discussed.  相似文献   

13.
In this paper, polymethylmetacrylate (PMMA) films are modified using an atmospheric pressure non-thermal plasma generated by a dielectric barrier discharge (DBD) in air. The DBD is generated in a plane-parallel reactor, which is driven by a μs pulse power supply with amplitude of up to 25 kV and repetition rate of 1 kHz, and the plasma generated shows homogeneous mode discharge characteristics verified by electrical measurements and light emission images with 0.5 ms exposure time. The treatment time ranging from 0 to 60 s and the discharge power density ranging from 11.62 to 30.83 W/m2 are used to study the effects of discharge parameters on the surface treatment, and the surface properties of PMMA films are studied using contact angle and surface energy measurement, scanning electron microscopy (SEM), atomic force microscopy (AFM), fourier transformed infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS). The study shows that, after the plasma treatment, the surface of PMMA film is etched, and oxygen-containing polar groups are introduced into the surface. These two processes can induce a remarkable decrease in water contact and a remarkable increase in surface energy, and the surface properties of PMMA films is improved accordingly. It is shown that the improvement of hydrophobicity depends on the discharge power density and treatment time, and there is a saturation treatment time at each discharge power density. Increasing discharge power density can induce more effective treatment of PMMA films, and less treatment time is needed to achieve the same level of surface treatment by increasing the discharge power density. Because more oxygen-containing polar groups are created and more obvious etching is occurred on the PMMA surface at higher discharge power density.  相似文献   

14.
High-density polyethylene (HDPE) surface was modified by radio-frequency discharge plasma and subsequently grafted by alkoxy silane to form a new surface containing polar functional groups. Reaction of the polar groups with vinyl silanes significantly improved hydrophilicity of the polymer. The decrease of surface energy of polymer modified by plasma in the course of ageing was stabilized by silane grafting. The changes in chemical structure of the polymer were analyzed by ATR-FTIR spectroscopy, surface roughness was studied using AFM. The surface energy, and its polar contribution of plasma modified HDPE increased, as well as peel strengths of adhesive joints to polyacrylate.  相似文献   

15.
Conditions for ion sputtering of a PbSe/CaF2/Si(111) epitaxial system in high-density inductively coupled plasma of high-frequency low-pressure discharge in argon have been established that ensure the formation of submicron-sized hollow lead structures on a lead-selenide surface. The surface was plasma-treated for time periods within 60–240 s at low energy (20–30 eV) of Ar+ ions, which is close to their sputtering threshold energy. The properties of the obtained material were studied by the techniques of scanning electron microscopy and energy-dispersive X-ray microanalysis. It is shown that the characteristic size, shape, and density of surface structures can be varied within broad limits depending on the time of plasma treatment and temperature of the material surface. Physical processes responsible for the formation of hollow lead structures under the proposed conditions of plasma sputtering are considered.  相似文献   

16.
Modification of non‐polar polymer surfaces In numerous technological relevant processes the adhesion in compound systems is of central importance. It concerns for example surface coatings and the manufacturing of composites. Particular problems result at the compounding of polyolefins, silicones and fluoropolymers due to their very low surface energy. The modification of such polymer surfaces with the aim of functionalisation and with it of increasing the surface energy results in an improvement of adhesion properties of the materials. A well‐established procedure, particularly in the automotive industry, is the flame treatment of the surfaces. However, a defined chemical modification of the surface depends on many parameters and thus is very difficult to standardize. A defined change of the surface can be better achieved through a targeted plasma treatment, in which in our case the surface is stabilized by a subsequent wet chemical process step.  相似文献   

17.
This study concerns the surface and adhesive properties of isotactic polypropylene (iPP) modified by an electric discharge plasma and affected by long-term hydrophobic recovery of the polymer surface after modification. The investigations were focused on the change in polarity of the modified polymer expressed by the polar fraction as well as on the decrease in the surface free energy, its polar component and mechanical work of adhesion (A m) to polyvinyl acetate. A m of modified iPP to polyvinyl acetate as a function of polar fraction can be described by a mathematical formula. It has been confirmed that the most intensive decrease in the surface and adhesive properties investigated is produced by the long-term hydrophobic recovery of the polymer appears in the course of the first 30 days after its modification. During subsequent aging the process of polymer hydrophobic recovery proceeds more slowly. It has been found that the value of surface and adhesive properties of iPP as well as the dynamics of the decrease in these properties during hydrophobic recovery of the surface after modification is, in the main, dependent on the iPP crystallinity.  相似文献   

18.
为了探讨Gd表面溅射保护膜的附着性能,利用直流磁控溅射技术在Gd基体上分别镀Cu和Al膜.用扫描电镜(SEM)和能谱仪对薄膜进行表征,用引拉法测定了薄膜的附着强度.结果表明:A1膜表面质量好,Al/Gd界面结合好,附着强度高,在优化工艺参数条件下薄膜附着强度可达到27.60 MPa;Cu膜表面质量较差,Cu/Gd界面结合差,附着强度低,在优化工艺参数条件下薄膜附着强度最高仅为3.02 MPa.  相似文献   

19.
Usually polymers need a pretreatment to adjust their surface properties for subsequent coating, printing or laminating process steps. Traditional surface modifying technologies show inherent problems related to aging effects and weak boundary layer formation, leading to a deterioration of adhesion. The introduction of polar groups to increase surface energy is used as basic principle of these technologies. The interaction between polymer surface and coating is purely physical in that case. The substantially new approach, reported here, turns the interaction between polymer surface and a subsequent coating into a well‐defined, chemical bond. Subsequent to a plasma or corona pretreatment, an acrylated photoinitiator is deposited onto the activated polymer surface, forming a very thin, covalently anchored and crosslinked primer layer. After application of an UV‐curable formulation and UV‐exposure covalent bonds between the substrate and the coating are formed leading to superior adhesion. Furthermore, selective adhesion is achievable by irradiating the system with scanning laser beams or through masks leading to structured modification of the surface ("lithography").  相似文献   

20.
Hard and transparent alumina (Al(2)O(3)) films with thicknesses in the range of 500 nm to 5 μm were successfully formed on polymethylmethacrylate (PMMA) and polystyrene (PS) surfaces. Our process is based on a lamination of anodized aluminum membranes (AAMs) to the polymer surfaces, followed by chemical etching. Because of capillary force, molten PS and liquid PMMA precursor were successfully pulled into the nanopores (10 nm diameter) within the Al(2)O(3) layers and solidified by cooling or polymerization, respectively. Our resulting AAM-laminated surfaces exhibited excellent adhesion and surface mechanical properties similar to those of fused silica, remaining crack-free and transparent even with Al(2)O(3) thicknesses exceeding 1 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号