首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The role of sodium-calcium exchanger in calcium homeostasis in Bergmann glial cells in situ was investigated by monitoring cytoplasmic calcium ([Ca2+]i) and sodium ([Na+]i) concentrations. The [Ca2+]i and [Na+]i transients were measured either separately by using fluorescent indicators fura-2 and SBFI, respectively, or simultaneously using the indicators fluo-3 and SBFI. Since the removal of extracellular Na+ induced a relatively small (approximately 50 nM) elevation of [Ca2+]i, the Na+/Ca2+ exchanger seems to play a minor role in regulation of resting [Ca2+]i. In contrast, kainate-triggered [Ca2+]i increase was significantly suppressed by lowering of the extracellular Na+ concentration ([Na+]o). In addition, manipulations with [Na+]o dramatically affected the recovery of the kainate-induced [Ca2+]i transients. Simultaneous recordings of [Ca2+]i and [Na+]i revealed that kainate-evoked [Ca2+]i transients were accompanied with an increase in [Na+]i. Moreover, kainate induced significantly larger [Ca2+]i and smaller [Na+]i transients under current-clamp conditions as compared to those recorded when the membrane voltage was clamped at -70 mV. The above results demonstrate that the Na(+)-Ca2+ exchanger is operative in Bergmann glial cells in situ and is able to modulate dynamically the amplitude and kinetics of [Ca2+]i signals associated with an activation of ionotropic glutamate receptors.  相似文献   

2.
We measured [Ca2+]i and [Na+]i in isolated transgenic (TG) mouse myocytes overexpressing the Na+-Ca2+ exchanger and in wild-type (WT) myocytes. In TG myocytes, the peak systolic level and amplitude of electrically stimulated (ES) [Ca2+]i transients (0.25 Hz) were not significantly different from those in WT myocytes, but the time to peak [Ca2+]i was significantly prolonged. The decline of ES [Ca2+]i transients was significantly accelerated in TG myocytes. The decline of a long-duration (4-s) caffeine-induced [Ca2+]i transient was markedly faster in TG myocytes, and [Na+]i was identical in TG and WT myocytes, indicating that the overexpressed Na+-Ca2+ exchanger is functionally active. The decline of a short-duration (100-ms) caffeine-induced [Ca2+]i transient in 0 Na+/0 Ca2+ solution did not differ between the two groups, suggesting that the sarcoplasmic reticulum (SR) Ca2+-ATPase function is not altered by overexpression of the Na+-Ca2+ exchanger. There was no difference in L-type Ca2+ current density in WT and TG myocytes. However, the sensitivity of ES [Ca2+]i transients to nifedipine was reduced in TG myocytes. This maintenance of [Ca2+]i transients in nifedipine was inhibited by Ni2+ and required SR Ca2+ content, consistent with enhanced Ca2+ influx by reverse Na+-Ca2+ exchange, and the resulting Ca2+-induced Ca2+ release from SR. The rate of rise of [Ca2+]i transients in nifedipine in TG myocytes was much slower than when both the L-type Ca2+ current and the Na+-Ca2+ exchange current function together. In TG myocytes, action potential amplitude and action potential duration at 50% repolarization were reduced, and action potential duration at 90% repolarization was increased, relative to WT myocytes. These data suggest that under these conditions, overexpression of the Na+-Ca2+ exchanger in TG myocytes accelerates the decline of [Ca2+]i during relaxation, indicating enhanced forward Na+-Ca2+ exchanger function. Increased Ca2+ influx also appears to occur, consistent with enhanced reverse function. These findings provide support for the physiological importance of both these modes of Na+-Ca2+ exchange.  相似文献   

3.
In higher plants changes and oscillations in cytosolic free Ca2+ concentration ([Ca2+]i) are central to hormonal physiology, including that of abscisic acid (ABA), which signals conditions of water stress and alters ion channel activities in guard cells of higher-plant leaves. Such changes in [Ca2+]i are thought to encode for cellular responses to different stimuli, but their origins and functions are poorly understood. Because transients and oscillations in membrane voltage also occur in guard cells and are elicited by hormones, including ABA, we suspected a coupling of [Ca2+]i to voltage and its interaction with ABA. We recorded [Ca2+]i by Fura2 fluorescence ratio imaging and photometry while bringing membrane voltage under experimental control with a two-electrode voltage clamp in intact Vicia guard cells. Free-running oscillations between voltages near -50 mV and -200 mV were associated with oscillations in [Ca2+]i, and, under voltage clamp, equivalent membrane hyperpolarizations caused [Ca2+]i to increase, often in excess of 1 microM, from resting values near 100 nM. Image analysis showed that the voltage stimulus evoked a wave of high [Ca2+]i that spread centripetally from the peripheral cytoplasm within 5-10 s and relaxed over 40-60 s thereafter. The [Ca2+]i increases showed a voltage threshold near -120 mV and were sensitive to external Ca2+ concentration. Substituting Mn2+ for Ca2+ to quench Fura2 fluorescence showed that membrane hyperpolarization triggered a divalent influx. ABA affected the voltage threshold for the [Ca2+]i rise, its amplitude, and its duration. In turn, membrane voltage determined the ability of ABA to raise [Ca2+]i. These results demonstrate a capacity for voltage to evoke [Ca2+]i increases, they point to a dual interaction with ABA in triggering and propagating [Ca2+]i increases, and they implicate a role for voltage in "conditioning" [Ca2+]i signals that regulate ion channels for stomatal function.  相似文献   

4.
Delta9-tetrahydrocannabinol induces [Ca2+]i increases in DDT1MF-2 smooth muscle cells. Both Ca2+ entry and release from intracellular Ca2+ stores were concentration dependently activated. The Ca2+ entry component contributed most to the increases in [Ca2+]i. Stimulation with delta9-tetrahydrocannabinol after functional downregulation of intracellular Ca2+ stores by longterm thapsigargin treatment, still induced a major Ca2+ entry and a minor Ca2+ release component. Thapsigargin sensitive influx and release were selectively inhibited by the cannabinoid CB1 receptor antagonist SR141716A. No effects on [Ca2+]i were obtained after stimulation with the CB2 receptor agonist palmitoylethanolamide. This study is the first demonstration of (1) Ca2+ release from thapsigargin sensitive intracellular stores and capacitative Ca2+ entry via CB1 receptor stimulation and of (2) an additional delta9-tetrahydrocannabinol induced thapsigargin insensitive component, mainly representing Ca2+ influx which is neither mediated by CB1 nor CB2 receptor stimulation.  相似文献   

5.
We have measured the [Ca2+] in the endoplasmic reticulum ([Ca2+]er) of intact HeLa cells at both 22 degrees C and 37 degrees C using endoplamsic reticulum-targeted, low Ca2+ affinity aequorin reconstituted with coelenterazine n. Aequorin consumption was much slower at 22 degrees C, and this allowed performing a much longer study of the dynamics of [Ca2+]er. The steady-state [Ca2+]er (500-600 microM) was not modified by the temperature, although both the rates of pumping and leak were decreased at 22 degrees C. The behavior of both [Ca2+]er and cytoplasmic [Ca2+] ([Ca2+]c) after the addition of increasing concentrations of agonists and/or Ca2+-ATPase inhibitors, or following incubation in Ca2+-free medium were compared. We show that agonists induce a fast but relatively small decrease in [Ca2+]er, which is enough to produce a sharp increase in [Ca2+]c. Termination of Ca2+ release is controlled by feedback inhibition of the inositol 1,4,5-trisphosphate receptors by [Ca2+]c, a mechanism that appears to be designed to release the minimum amount of Ca2+ necessary to produced the required [Ca2+]c signal. We also show that Ca2+ release is inhibited progressively when [Ca2+]er decreases below a threshold of about 150 microM, even in the absence of Ca2+ pumping or -Ca2+-c increase. This effect is consistent with a regulation of the inositol 1,4,5-trisphosphate-gated channels by [Ca2+]er.  相似文献   

6.
[Ca2+]i homeostasis in individual PC12 cells after elevated [K+]o was studied by ratiometric microscopy, during nerve growth factor (NGF) deprivation. A significantly lower number of cells responded with an increased [Ca2+]i in the NGF deprived condition. Moreover, the responding cells were more deficient in regulating their [Ca2+]i back to control levels, after the transient peak. This suggests that differentiated neurons do not traverse the apoptotic program homogeneously with regard to their [Ca2+]i regulation and that NGF deprived PC12 cells have more difficulties to reduce their [Ca2+]i after influx of [Ca2+]o.  相似文献   

7.
The possible role of altered extracellular Ca2+ concentration ([Ca2+]o) in skeletal muscle fatigue was tested on isolated slow-twitch soleus and fast-twitch extensor digitorum longus muscles of the mouse. The following findings were made. 1) A change from the control solution (1.3 mM [Ca2+]o) to 10 mM [Ca2+]o, or to nominally Ca2+-free solutions, had little effect on tetanic force in nonfatigued muscle. 2) Almost complete restoration of tetanic force was induced by 10 mM [Ca2+]o in severely K+-depressed muscle (extracellular K+ concentration of 10-12 mM). This effect was attributed to a 5-mV reversal of the K+-induced depolarization and subsequent restoration of ability to generate action potentials (inferred by using the twitch force-stimulation strength relationship). 3) Tetanic force depressed by lowered extracellular Na+ concentration (40 mM) was further reduced with 10 mM [Ca2+]o. 4) Tetanic force loss at elevated extracellular K+ concentration (8 mM) and lowered extracellular Na+ concentration (100 mM) was partially reversed with 10 mM [Ca2+]o or markedly exacerbated with low [Ca2+]o. 5) Fatigue induced by using repeated tetani in soleus was attenuated at 10 mM [Ca2+]o (due to increased resting and evoked forces) and exacerbated at low [Ca2+]o. These combined results suggest, first, that raised [Ca2+]o protects against fatigue rather than inducing it and, second, that a considerable depletion of [Ca2+]o in the transverse tubules may contribute to fatigue.  相似文献   

8.
The effects of lowering extracellular Na+ concentration [Na+]o, on cytosolic Ca2+ concentration, [Ca2+]c were examined by a microfluorimetric method using fura-2 in perifused preparations of isolated rat pancreatic islets. The total replacement of extracellular Na+ (Na+o) by equimolar N-methyl-D-(--)-glucamine caused a rapid rise in [Ca2+]c, and partial replacement of Na+o resulted in correlative rises in [Ca2+]c in accordance with the magnitude of reduced [Na+]o. The rise in [Ca2+]c induced by Na+o removal was strongly inhibited in the Ca2+o-deficient environment or by Ni2+. The [Ca2+]c rise, however, remained almost unchanged in the presence of nifedipine or SK&F 96365, and was enhanced by the addition of ouabain. The electrochemical gradients for Ca2+ (delta mu Ca2+) and Na+ (delta mu Na+) were calculated to be 39.08 and 12.8 kJ/mol, respectively, in this study, indicating a stoichiometry of 3Na+: 1 Ca2+. These results indicate that, in rat pancreatic islets, the rise in [Ca2+]c induced by lowering [Na+]o is mainly due to Ca2+ entry medicated by the Na+/Ca2+ exchanger operating with the stoichiometry of 3Na+:1 Ca2+, and that the Na+/Ca2+ exchanger plays an important role in maintaining stable-state [Ca2+]c.  相似文献   

9.
Force development in skeletal muscle is driven by an increase in myoplasmic free [Ca2+]i ([Ca2+]i) due to Ca2+ release from the sarcoplasmic reticulum (SR). The magnitude of [Ca2+]i elevation during stimulation depends on: (a) the rate of Ca2+ release from the SR; (b) the rate of Ca2+ uptake by the SR; and (c) the myoplasmic Ca2+ buffering. We have used fluorescent Ca2+ indicators to measure [Ca2+]i in intact, single fibres from mouse and Xenopus muscles under conditions where one or more of the above factors are changed. The following interventions resulted in increased tetanic [Ca2+]i: beta-adrenergic stimulation, which potentiates the SR Ca2+ release; application of 2.5-di(tert-butyl)-1,4-benzohydroquinone, which inhibits SR Ca2+ pumps; application of caffeine, which facilitates SR Ca2+ release and inhibits SR Ca2+ uptake; early fatigue, where the rate of SR Ca2+ uptake is reduced; acidosis, which reduces both the myoplasmic Ca2+ buffering and the rate of SR Ca2+ uptake. Reduced tetanic [Ca2+]i was observed in late fatigue, due to reduced SR Ca2+ release, and in alkalosis, due to increased myoplasmic Ca2+ buffering. Force is monotonically related to [Ca2+]i but depends also on the myofibrillar Ca2+ sensitivity and the maximum force cross-bridges can produce. This is clearly illustrated by changes of intracellular pH where, despite a lower tetanic [Ca2+]i, tetanic force is higher in alkalosis than acidosis due to increases of myofibrillar Ca2+ sensitivity and maximum cross-bridge force.  相似文献   

10.
The effect of external calcium concentration ([Ca2+]o) on membrane potential-dependent calcium signals in isolated tiger salamander rod and cone photoreceptor inner segments was investigated with patch-clamp and calcium imaging techniques. Mild depolarizations led to increases in intracellular Ca2+ levels ([Ca2+]i) that were smaller when [Ca2+]o was elevated to 10 mM than when it was 3 mM, even though maximum Ca2+ conductance increased 30% with the increase in [Ca2+]o. When external calcium was lowered to 1 mM [Ca2+]o, maximum Ca2+ conductance was reduced, as expected, but the mild depolarization-induced increase in [Ca2+]i was larger than in 3 mM [Ca2+]o. In contrast, when photoreceptors were strongly depolarized, the increase in [Ca2+]i was less when [Ca2+]o was reduced. An explanation for these observations comes from an assessment of Ca2+ channel gating in voltage-clamped photoreceptors under changing conditions of [Ca2+]o. Although Ca2+ conductance increased with increasing [Ca2+]o, surface charge effects dictated large shifts in the voltage dependence of Ca2+ channel gating. Relative to the control condition (3 mM [Ca2+]o), 10 mM [Ca2+]o shifted Ca2+ channel activation 8 mV positive, reducing channel open probability over a broad range of potentials. Reducing [Ca2+]o to 1 mM reduced Ca2+ conductance but shifted Ca2+ channel activation negative by 6 mV. Thus the intracellular calcium signals reflect a balance between competing changes in gating and permeation of Ca2+ channels mediated by [Ca2+]o. In mildly depolarized cells, the [Ca2+]o-induced changes in Ca2+ channel activation proved stronger than the [Ca2+]o-induced changes in conductance. In response to the larger depolarizations caused by 80 mM [K+]o, the opposite is true, with conductance changes dominating the effects on channel activation.  相似文献   

11.
Characterization of mammalian homologues of Drosophila TRP proteins, which induce light-activated Ca2+ conductance in photoreceptors, has been an important clue to understand molecular mechanisms underlying receptor-activated Ca2+ influx in vertebrate cells. We have here isolated cDNA that encodes a novel TRP homologue, TRP5, predominantly expressed in the brain. Recombinant expression of the TRP5 cDNA in human embryonic kidney cells dramatically potentiated extracellular Ca2+-dependent rises of intracellular Ca2+ concentration ([Ca2+]i) evoked by ATP. These [Ca2+]i transients were inhibited by SK&F96365, a blocker of receptor-activated Ca2+ entry, and by La3+. Expression of the TRP5 cDNA, however, did not significantly affect [Ca2+]i transients induced by thapsigargin, an inhibitor of endoplasmic reticulum Ca2+-ATPases. ATP stimulation of TRP5-transfected cells pretreated with thapsigargin to deplete internal Ca2+ stores caused intact extracellular Ca2+-dependent [Ca2+]i transients, whereas ATP suppressed [Ca2+]i in thapsigargin-pretreated control cells. Furthermore, in ATP-stimulated, TRP5-expressing cells, there was no significant correlation between Ca2+ release from the internal Ca2+ store and influx of extracellular Ca2+. Whole-cell mode of patch-clamp recording from TRP5-expressing cells demonstrated that ATP application induced a large inward current in the presence of extracellular Ca2+. Omission of Ca2+ from intrapipette solution abolished the current in TRP5-expressing cells, whereas 10 nM intrapipette Ca2+ was sufficient to support TRP5 activity triggered by ATP receptor stimulation. Permeability ratios estimated from the zero-current potentials of this current were PCa:PNa:PCs = 14.3:1. 5:1. Our findings suggest that TRP5 directs the formation of a Ca2+-selective ion channel activated by receptor stimulation through a pathway that involves Ca2+ but not depletion of Ca2+ store in mammalian cells.  相似文献   

12.
GABAC responses were recorded in cultured cone-driven horizontal cells from the catfish retina using the patch clamp technique. At a holding potential of -49 mV, a bicuculline-resistant inward current (IGABA) was observed when 10 microM GABA was applied. The amplitude of IGABA increased as the extracellular Ca2+ ([Ca2+]o) was increased. Concentration-response curves of IGABA at 2.5 and 10 mM -Ca2+-o had similar EC50 (3.0 and 3.1 microM) and Hill coefficients (1.54 and 1. 24). However, the maximal response estimated at 10 mM [Ca2+]o was larger than the maximal response at 2.5 mM [Ca2+]o. Increasing Ca influx through voltage-gated Ca channels and the resulting rise in the intracellular Ca2+ concentration had no effects on IGABA. However, IGABA was inhibited by extracellular divalent cations, with the following order of the inhibitory potency: Zn2+ > Ni2+ > Cd2+ > Co2+. The inhibitory action of Zn2+ on the [Ca2+]o-dependent IGABA increase was noncompetitive. The action of [Ca2+]o on IGABA was mimicked by Ba2+ or Sr2+. These results demonstrate that the extracellular domain of GABAC receptors has two functionally distinct binding sites represented by Ca2+ (facilitation) and Zn2+ (inhibition). Since [Ca2+]o and [Zn2+]o change into the opposite direction by light, it seems likely that they modify cooperatively the efficacy of the positive feedback consisting of the GABAC receptor.  相似文献   

13.
14.
The precise mechanisms by which nitric oxide (NO) decreases free [Ca2+]i, inhibits Ca2+ influx, and relaxes vascular smooth muscle are poorly understood. In rabbit and mouse aorta, agonist-induced contractions and increases in [Ca2+]i were resistant to nifedipine, suggesting Ca2+ entry through non-L-type Ca2+ channels. Relaxations to NO were inhibited by thapsigargin (TG) or cyclopiazonic acid (CPA) indicating the involvement of sarcoplasmic reticulum ATPase (SERCA). Studies of the effect of NO on [Ca2+]i and the rate of Mn2+ influx with fura-2 fluorometry in rabbit aortic smooth muscle cells in primary culture were designed to test how SERCA is involved in mediating the response to NO. When cells were stimulated with angiotensin II (AII), NO accelerated the removal of Ca2+ from the cytoplasm, decreased [Ca2+]i, and inhibited Ca2+ and Mn2+ influx. Inhibition of SERCA abolished all the effects of NO. In contrast, inhibition of the Na+/Ca2+exchanger or the plasma membrane Ca2+ ATPase had no influence on the ability of NO to decrease [Ca2+]i. NO maximally decreased [Ca2+]i within 5 s, whereas significant inhibition of AII-induced Ca2+ and Mn2+ influx required more than 15 s. The inhibition of cation influx strictly depended on [Ca2+]o and functional SERCA, suggesting that during the delay before NO inhibits Ca2+ influx, the influx of Ca2+ and the uptake into intracellular stores are required. In the absence of [Ca2+]o, NO diminished the AII-induced [Ca2+]i transient by a SERCA-dependent mechanism and increased the amount of Ca2+ in the stores subsequently released by ionomycin. The present study indicates that the initial rapid decrease in [Ca2+]i caused by NO in vascular smooth muscle is accounted for by the uptake of Ca2+ by SERCA into intracellular stores. It is proposed that the refilling of the stores inhibits store-operated Ca2+ influx through non-L-type Ca2+ conducting ion channels and that this maintains the decrease in [Ca2+]i and NO-induced relaxation.  相似文献   

15.
In bovine tracheal smooth muscle, carbachol (CCh, 1 microM) and high K+ (72.7 mM) induced sustained increases in cytosolic Ca2+ level ([Ca2+]i), myosin light chain (MLC) phosphorylation and force of contraction. Forskolin (FK, 1-10 microM) inhibited the CCh-induced increase in [Ca2+]i, MLC phosphorylation and force in parallel. In contrast, FK inhibited the high K(+)-induced contraction and MLC phosphorylation without changing [Ca2+]i. In the absence of extracellular Ca2+ (with 0.5 mM EGTA), CCh (10 microM) and caffeine (20 mM) induced transient increase in [Ca2+]i and contractile force by releasing Ca2+ from cellular store. FK strongly inhibited the CCh-induced Ca2+ transient, but failed to inhibit the caffeine-induced Ca2+ transient. In the absence of external Ca2+, 12-deoxyphorbol 13-isobutylate (DPB, 1 microM) induced sustained contraction without increase in [Ca2+]i and MLC phosphorylation. FK inhibited this contraction without changing [Ca2+]i. In permeabilized muscle, Ca2+ induced contraction in a concentration-dependent manner. FK (10 microM) and cAMP (1-100 microM) shifted the Ca(2+)-force curve to the higher Ca2+ levels. CCh with GTP, GTP gamma S or DPB enhanced contraction in the presence of constant level of Ca2+. Forskolin and cAMP also inhibited the enhanced contractions in the permeabilized muscle. In the permeabilized, thiophosphorylated muscle, ATP induced contraction in the absence of Ca2+. cAMP (300 microM) had no effect on this contraction. These results suggest that forskolin inhibits agonist-induced contraction in tracheal smooth muscle by multiple mechanisms of action; 1) inhibition of MLC phosphorylation by reducing Ca2+ influx and Ca2+ release, 2) inhibition of MLC phosphorylation by changing the MLC kinase/phosphatase balance, and 3) inhibition of regulatory mechanism which is not dependent on MLC phosphorylation.  相似文献   

16.
OBJECTIVE: The aim was to evaluate effects of ethanol on cardiac function and intracellular Ca2+ ([Ca2+]i) in perfused rat hearts. METHODS: A Langendorff perfused rat heart preparation was used. Changes in [Ca2+]i were evaluated by surface fluorometry in hearts loaded with Indo 1-AM. RESULTS: Clinically relevant concentrations of ethanol (0.2 or 0.4% vol/vol) had no significant haemodynamic effects. High concentrations of ethanol (1, 2, 3, and 4% vol/vol) showed dose dependent decreases in developed pressure and the systolic peak and overall amplitude of the Indo 1 fluorescence transients (identical to [Ca2+]i), that were partially antagonised by high extracellular Ca2+ ([Ca2+]o = 4 mM). The ethanol concentrations that decreased developed pressure by 50% were 1.4 and 2.6% in the low (1.5 mM) and high [Ca2+]o, respectively. Four per cent ethanol decreased the amplitude of Indo 1 fluorescence transients to 54.5(SD 3.1) and 64.6(7.9)% of control values in the low and high [Ca2+]o, respectively. A relationship between the amplitude of Indo 1 fluorescence and developed pressure was fitted to a single sigmoid curve irrespective of [Ca2+]o. During ethanol washout, there was a dose dependent overshoot of the fluorescence ratio. CONCLUSIONS: Only high concentrations of ethanol depressed left ventricular function in a dose dependent manner by decreasing the amplitude of [Ca2+]i transients. High [Ca2+]o partially antagonised acute alcoholic cardiac depression by increasing the amplitude of [Ca2+]i transients. [Ca2+]i is a mediator of the acute cardiac effects of ethanol in perfused intact rat hearts.  相似文献   

17.
To study the effects of stretch on the function of rat left atrium, we recorded contraction force, calcium transients, and intracellular action potentials (APs) during stretch manipulations. The stretch of the atrium was controlled by intra-atrial pressure. The Frank-Starling behavior of the atrium was manifested as a biphasic increase of the contraction force after increasing the stretch level. The development of the contraction force after step increase of the stretch (intra-atrial pressure from 1 to 3 mm Hg) was accompanied by the increase in the amplitude of the calcium transients (P<0.05, n=4) and decrease in the time constant of the Ca2+ transient decay. The APs of the individual myocytes were also affected by stretch; the duration of the AP was decreased at positive voltages (AP duration at 15% repolarization level, P<0.001; n=13) and increased at negative voltages (AP duration at 90% repolarization level, P<0. 01; n=13). To study the mechanisms causing these changes we developed a mathematical model describing [Ca2+]i and electrical behavior of single rat atrial myocytes. Stretch was simulated in the model by increasing the troponin (TnC) sensitivity and/or applying a stretch-activated (SA) calcium influx. We mimicked the Ca2+ influx by introducing a nonselective cationic conductance, the SA channels, into the membrane. Neither of the 2 plausible mechanosensors (TnC or SA channels) alone could produce similar changes in the Ca2+ transients or APs as seen in the experiments. The model simulated the effects of stretch seen in experiments best when both the TnC affinity and the SA conductance activation were applied simultaneously. The SA channel activation led to gradual augmentation of Ca2+ transients, which modulated the APs through increased Na+/Ca2+-exchanger inward current. The role of TnC affinity change was to modulate the Ca2+ transients, stabilize the diastolic [Ca2+]i, and presumably to produce the immediate increase of the contraction force after stretch seen in experiments. Furthermore, we found that the same mechanism that caused the normal physiological responses to stretch could also generate arrhythmogenic afterpotentials at high stretch levels in the model.  相似文献   

18.
1. The effect of cilostazol, an inhibitor of phosphodiesterase type III (PDE III), on the contraction induced by histamine was studied by making simultaneous measurements of isometric force and the intracellular concentration of Ca2+ ([Ca2+]i) in endothelium-denuded muscle strips from the peripheral part of the middle cerebral artery of the rabbit. 2. High K+ (80 mM) produced a phasic, followed by a tonic increase in both [Ca2+]i and force. Cilostazol (10 microM) did not modify the resting [Ca2+]i, but it did significantly decrease the tonic contraction induced by high K+ without a corresponding change in the [Ca2+]i response. 3. Histamine (3 microM) produced a phasic, followed by a tonic increase in both [Ca2+]i and force. Cilostazol (3 and 10 microM) significantly reduced both the phasic and tonic increases in [Ca2+]i and force induced by histamine, in a concentration-dependent manner. 4. Rp-adenosine-3':5'-cyclic monophosphorothioate (Rp-cAMPS, 0.1 mM), a PDE-resistant inhibitor of protein kinase A (and as such a cyclic AMP antagonist), did not modify the increases in [Ca2+]i and force induced by histamine alone, but it did significantly decrease the cilostazol-induced inhibition of the histamine-induced responses. 5. In Ca2+-free solution containing 2 mM EGTA, both histamine (3 microM) and caffeine (10 mM) transiently increased [Ca2+]i and force. Cilostazol (1-10 microM) (i) significantly reduced the increases in [Ca2+]i and force induced by histamine, and (ii) significantly reduced the increase in force but not the increase in [Ca2+]i induced by caffeine. 6. In ryanodine-treated strips, which had functionally lost the histamine-sensitive Ca2+ storage sites, histamine (3 microM) slowly increased [Ca2+]i and force. Cilostazol (3 and 10 microM) lowered the resting [Ca2+]i, but did not modify the histamine-induced increase in [Ca2+]i, suggesting that functional Ca2+ storage sites are required for the cilostazol-induced inhibition of histamine-induced Ca2+ mobilization. 7. The [Ca2+]i-force relationship was obtained in ryanodine-treated strips by applying ascending concentrations of Ca2+ (0.16-2.6 mM) in Ca2+-free solution containing 100 mM K+. Histamine (3 microM) shifted the [Ca2+]i-force relationship to the left and increased the maximum Ca2+-induced force. Under the same conditions, whether in the presence or absence of 3 microM histamine, cilostazol (3-10 microM) shifted the [Ca2+]i-force relationship to the right without producing a change in the maximum Ca2+-induced force. 8. It is concluded that, in smooth muscle of the peripheral part of the rabbit middle cerebral artery, cilostazol attenuates the histamine-induced contraction both by inhibiting histamine-induced Ca2+ mobilization and by reducing the myofilament Ca2+ sensitivity. It is suggested that the increase in the cellular concentration of cyclic AMP that will follow the inhibition of PDE III may play an important role in the cilostazol-induced inhibition of the histamine-contraction.  相似文献   

19.
Irreversible anoxic injury of axons in the rat optic nerve requires the presence of extracellular Ca2+. To test the hypothesis that Ca2+ enters an intracellular compartment during anoxia we monitored [Ca2+]0 in this CNS white matter tract using ion-sensitive microelectrodes. Periods of anoxia lasting 15 min resulted in a rapid, reversible increase in [Ca2+]0 accompanied by transient loss of nerve conduction. This increase in [Ca2+]0 was apparently the result of extracellular space shrinkage. Anoxic periods lasting 60 min resulted in an initial rise followed by a sustained fall in [Ca2+]0, indicative of net influx of Ca2+ into an intracellular compartment. Following reoxygenation after 60 min of anoxia, [Ca2+]0 slowly returned toward control levels but nerve conduction recovered incompletely, indicating irreversible loss of function. Removal of bath Ca2+ lowered [Ca2+]0 to about 100 microM, prevented the anoxia-induced fall in [Ca2+]0, and protected against irreversible loss of the compound action potential.  相似文献   

20.
Intracellular calcium ion ([Ca2+]i) transients were measured in voltage-clamped rat cardiac myocytes with fura-2 or furaptra to quantitate rapid changes in [Ca2+]i. Patch electrode solutions contained the K+ salt of fura-2 (50 microM) or furaptra (300 microM). With identical experimental conditions, peak amplitude of stimulated [Ca2+]i transients in furaptra-loaded myocytes was 4- to 6-fold greater than that in fura-2-loaded cells. To determine the reason for this discrepancy, intracellular fura-2 Ca2+ buffering, kinetics of Ca2+ binding, and optical properties were examined. Decreasing cellular fura-2 concentration by lowering electrode fura-2 concentration 5-fold, decreased the difference between the amplitudes of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes by twofold. Thus, fura-2 buffers [Ca2+]i under these conditions; however, Ca2+ buffering is not the only factor that explains the different amplitudes of the [Ca2+]i transients measured with these indicators. From the temporal comparison of the [Ca2+]i transients measured with fura-2 and furaptra, the apparent reverse rate constant for Ca2+ binding of fura-2 was at least 65s-1, much faster than previously reported in skeletal muscle fibers. These binding kinetics do not explain the difference in the size of the [Ca2+]i transients reported by fura-2 and furaptra. Parameters for fura-2 calibration, Rmin, Rmax, and beta, were obtained in salt solutions (in vitro) and in myocytes exposed to the Ca2+ ionophore, 4-Br A23187, in EGTA-buffered solutions (in situ). Calibration of fura-2 fluorescence signals with these in situ parameters yielded [Ca2+]i transients whose peak amplitude was 50-100% larger than those calculated with in vitro parameters. Thus, in vitro calibration of fura-2 fluorescence significantly underestimates the amplitude of the [Ca2+]i transient. These data suggest that the difference in amplitude of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes is due, in part, to Ca2+ buffering by fura-2 and use of in vitro calibration parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号