首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhao  Z. L.  Niu  Y.  Gesmundo  F.  Wang  C. L. 《Oxidation of Metals》2000,54(5-6):559-574
Two nanophase Ni-base alloys containing 50 and 25 at.% Ag prepared by mechanical alloying, denoted Ni–50Ag and Ni–25Ag were oxidized in air at 600 and 700°C for 24 hr. Ni–50Ag underwent internal oxidation of nickel, associated with the formation of a continuous outermost layer of silver metal with scaling rates larger than those for pure nickel. On the contrary, Ni–25Ag formed a continuous NiO layer surmounted by a discontinuous silver layer and internal oxidation was suppressed. The oxidation rate of Ni–25Ag decreased with time much more rapidly than predicted by the parabolic rate law during the initial stage and eventually became parabolic, with rate constants much lower than those for the oxidation of pure nickel. These results are attributed to the two-phase nature and, particularly, to the very small grain size of the two alloys.  相似文献   

2.
The oxidation behavior of FeCoNi, FeCoNiCr, and FeCoNiCrCu equi-molar alloys was studied over the temperature range 800–1000 °C in dry air. The ternary and quaternary alloys were single-phase, while the quinary alloy was two-phase. In general, the oxidation kinetics of the ternary and quinary alloys followed the two-stage parabolic rate law, with rate constants generally increasing with temperature. Conversely, three-stage parabolic kinetics were observed for the quaternary alloy at T 900°C. The additions of Cr and Cu enhanced the oxidation resistance to a certain extent. The scales formed on all the alloys were triplex and strongly dependent on the alloy composition. In particular, on the ternary alloy, they consist of an outer-layer of CoO, an intermediate layer of Fe3O4, and an inner-layer of CoNiO2 and Fe3O4. Internal oxidation with formation of FeO precipitates was also observed for this alloy, which had a thickness increasing with temperature. The scales formed on the quaternary alloy consisted of an outer layer of Fe3O4 and CoCr2O4, an intermediate layer of FeCr2O4 and NiCr2O4, and an inner layer of Cr2O3. Finally, the scales formed on the quinary alloy are all heterophasic, consisting of an outer layer of CuO, an intermediate-layer of CuO and Fe3O4, and an inner-layer of Fe3O4, FeCr2O4, and CuCrO2. The formation of Cr2O3 on the quaternary alloy and possibly that of CuCrO2 on the quinary alloy was responsible for the reduction of the oxidation rates as compared to the ternary alloy.  相似文献   

3.
Gesmundo  F.  Niu  Y.  Oquab  D.  Roos  C.  Pieraggi  B.  Viani  F. 《Oxidation of Metals》1998,49(1-2):115-146
The air oxidation of three Fe-Cu alloyscontaining 25, 50, and 75 wt.% Cu has been studied at600-800°C. The oxidation followed the parabolic lawonly approximately with rates lower than those of thepure constituent metals. The scales were alwayscomposed of an inner layer containing a mixture ofcopper metal and iron oxide and of an outer oxide layerwhose composition depended on the copper content of the alloy. For the two alloys richer in ironthe external layer was composed mostly of iron oxideswith some copper-rich particles which oxidized only inthe external-scale zone. For the alloy richest in copper the external layer contained a complexmixture of iron oxides, copper particles and doubleFe-Cu oxides surmounted by an outermost copper-oxidelayer. No significant iron depletion was observed in the alloys beneath the region of internaloxidation. The peculiar scale microstructure observedfor these alloys is considered mainly as a consequenceof their two-phase microstructure and of the limited solubilities of the two components in oneanother.  相似文献   

4.
Rizzo  F. C.  Zeng  Chaoliu  Wu  Weitao 《Oxidation of Metals》1998,50(1-2):71-88
A single sputtered NiCrAlY coating and a complexcoating of inner ion-plated TiN and outer sputteredNiCrAlY were prepared on the intermetallic compoundTi3Al-Nb. Their oxidation behavior wasexamined at 850, 900, and 950°C in air by thermalgravimetry combined with XRD, SEM, and EDAX. The resultsshowed that Ti3Al-Nb followed approximatelyparabolic oxi dation, forming an outer thinAl2O3-rich scale and an inner TiO2-rich layer doped withNb at the three temperatures. The TiO2-richlayer doped with Nb dominated the oxidation reaction.The single NiCrAlY coating did not follow parabolicoxidation exactly at 850 and 950°C, but oxidizedapproximately in a parabolic manner, because theinstantaneous parabolic constants changed slightly withtime. Besides the Al2O3 scale,TiO2 formed from the coating surface at the coating-substrate interface. Thedeterioration of the coating accelerated with increasingtemperature. The NiCrAlY-TiN coating showed two-stageparabolic oxidation at 850 and 900°C, and anapproximate parabolic oxidation at 950°C. The TiN layerwas effective as a barrier to inhibit coating-alloyinterdiffusion.  相似文献   

5.
Zeng  C. L.  Rizzo  F. C.  Monteiro  M. J.  Wu  W. T. 《Oxidation of Metals》1999,51(5-6):495-506
The oxidation of Fe-Y alloys containing 2 and 5at.% Y and pure iron has been studied at 600-800°Cin air. The oxidation of pure iron follows the parabolicrate law at all temperatures. The oxidation of Fe-Y alloys at 600°C approximatelyfollows the parabolic rate law, but not at 700 and800°C, where the oxidation goes through severalstages with quite different rates. The oxide scales on Fe-2Y and Fe-5Y at 700 and 800°C arecomposed of external pure Fe oxides containingFe2O3,Fe3O4, and FeO, with FeO being themain oxide and an inner mixture of FeO andYFeO3. The scales on Fe-2Y and Fe-5Y at 600°C consist ofFe2O3,Fe3O4, andY2O3, with a minor amount of FeO.Significant internal oxidation in both Fe-Y alloysoccurred at all temperatures. The Y-containing oxidesfollow the distribution of the original intermetalliccompound phase in the alloys. The effects of Y on theoxidation of pure Fe are discussed.  相似文献   

6.
Niu  Y.  Xiang  J.H.  Gesmundo  F. 《Oxidation of Metals》2003,60(3-4):293-313
The oxidation of a Ni-rich and a Cu-rich single-phase ternary alloy containing about 5at.% aluminum has been studied at 800 and 900°C under 1atm O2. The behavior of the Ni-rich alloy is similar to that of a binary Ni–Al alloy with a similar Al content at both temperatures, with formation of an external NiO layer coupled to the internal oxidation of aluminum. The Cu-rich ternary alloy shows a larger tendency to form protective alumina scales, even though its behavior is borderline between protective and non-protective. In fact, at 800°C, after an initial stage of fast reaction during which all the alloy components are oxidized, this alloy is able to develop a continuous layer of alumina at the base of the scale which prevents the internal oxidation of aluminum. On the contrary, at 900°C the innermost alumina layer undergoes repeated rupturing followed by healing, so that internal oxidation of Al is only partly eliminated. As a result, the corrosion kinetics of the Cu-rich ternary alloy at 900°C are much faster than at 800°C and very similar to those of pure copper and of Al-dilute binary Cu–Al alloys. Possible reasons for the larger tendency of the Cu-rich alloy to form external alumina scales than the Ni-rich alloy are examined.  相似文献   

7.
Talekar  V. R.  Patra  A.  Sahoo  S. K. 《Oxidation of Metals》2020,93(1-2):17-28
Oxidation of Metals - Oxidation behavior (at 1000 °C for 10 h) of 1.0 wt% oxide dispersion-strengthened (nano-Y2O3, Al2O3, La2O3 dispersed) mechanically alloyed...  相似文献   

8.
Cao  Z. Q.  Niu  Y.  Gesmundo  F. 《Oxidation of Metals》2001,56(3-4):287-297
Two ternary Cu–Ni–Cr alloys containing approximately 20 wt.% chromium, but with a different Cu and Ni content, have been oxidized in 1 atm of pure oxygen at 700–800°C. The alloy containing about 60 wt.% nickel (Cu–60Ni–20Cr) was composed of a single solid-solution phase and formed external scales of chromium ocide with an outermost layer containing a mixture of copper and nickel oxides. The alloy comprised of about 40 wt.% nickel (Cu–40Ni–20Cr) contained a mixture of two metal phases and formed complex external scales, containing copper oxide and a nickel–chromium spinel plus a region where islands of the metallic phase richer in chromium surrounded by a thin chromia layer were mixed with oxidized islands rich in copper and nickel, producing a situation out of equilibrium. With time, a very irregular and thin but essentially continuous layer of chromia formed at the base of the mixed internal region for this alloy, producing a gradual decrease of the corrosion rate down to very low values. The oxidation behavior of the two alloys is interpreted in terms of their different microstructure. In particular, the fast initial oxidation of Cu–40Ni–20Cr, associated with the formation of large amounts of copper oxides, is attributed to restrictions in chromium diffusion in the alloy due to the simultaneous presence of two metal phases.  相似文献   

9.
Susan  D. F.  Marder  A. R. 《Oxidation of Metals》2002,57(1-2):131-157
The oxidation of nickel-matrix/aluminum-particle composite coatings was studied using thermogravimetric (TG) analysis in air at 800°C for up to 100 hr. Long-term oxidation behavior was investigated with furnace exposures up to 2000 hr. The coatings were applied to nickel substrates by the composite electrodeposition technique and vacuum heat treated for 3-hr at 825°C prior to oxidation testing. The heat-treated coatings contained a two-phase (Ni)+(Ni3Al) microstructure and the overall coating composition was approximately 7 wt.% Al. Also examined were uncoated nickel substrates and bulk Ni–Al alloys containing 6.2, 9.0, and 14 wt.% Al. For all samples, mass-gain kinetics were obtained from thermogravimetric (TG) experiments and furnace exposures and the composition and morphology of the oxidation products were examined using optical microscopy, scanning-electron microscopy (SEM), electron-probe microanalysis (EPMA), and X-ray diffraction (XRD). An outer NiO layer and an inner -Al2O3 layer formed on the composite-coating surface. The addition of a small amount of Si (about 1–2 at.%) was found to have little effect on Ni–Al composite-coating oxidation behavior. The Ni–Al coatings behave similarly to bulk + (Ni3Al) or single-phase (Ni3Al). In addition, at lower temperatures, such as 800°C, the coatings benefit from a small grain size that enhances Al diffusion to the surface to form the protective alumina layer. Based on oxidation kinetics and morphology, a critical Al content of about 6 wt.% was found, below which internal oxidation and higher oxidation mass gains were observed.  相似文献   

10.
Susan  D. F.  Marder  A. R. 《Oxidation of Metals》2002,57(1-2):159-180
The oxidation behavior of nickel-matrix/aluminum-particle composite coat–ings was studied using thermogravimetric (TG) analysis and long-term furnace exposure in air at 1000°C. The coatings were applied by the composite-electrodeposition technique and vacuum heat treated for 3 hr at 825°C prior to oxidation testing. The heat-treated coatings consisted of a two-phase mixture of (Ni)+ (Ni3Al). During short-term exposure at 1000°C, a thin -Al2O3 layer developed below a matrix of spinel NiAl2O4, with -Al2O3 needles at the outer oxide surface. After 100 hr of oxidation, remnants of -Al2O3 are present with spinel at the surface and an inner layer of -Al2O3. After 1000–2000 hr, a relatively thick layer of -Al2O3 is found below a thin, outer spinel layer. Oxidation kinetics are controlled by the slow growth of the inner Al2O3 layer at short-term and intermediate exposures. At long times, an increase in mass gain is found due to oxidation at the coating–substrate interface and enhanced scale formation possibly in areas of reduced Al content. Ternary Si additions to Ni–Al composite coatings were found to have little effect on oxidation performance. Comparison of coatings with bulk Ni–Al alloys showed that low Al -alloys exhibit a healing Al2O3 layer after transient Ni-rich oxide growth. Higher Al alloys display Al2O3-controlled kinetics with low mass gain during TG analysis.  相似文献   

11.
Ul-Hamid  A. 《Oxidation of Metals》2002,57(3-4):217-230
The oxidation behavior of alloy grain boundaries in model Ni–Cr alloys was investigated. Two binary alloys with nominal wt.% compositions of Ni–10Cr and Ni–20Cr were used. Oxidation was performed in air for 50 hr at 1000°C. The grain boundaries intersecting the alloy surface in Ni–10Cr did not exhibit oxidation, whereas the alloy formed a thick (60 m) oxide layer which formed inwardly. The grain boundaries in this alloy showed a passivating influence at the adjacent regions and retarded oxide formation. An examination of the Ni–20Cr cross section revealed preferential oxidation to a depth of 65 m at the alloy grain boundaries intersecting its surface, while the oxide at the surface was a few micrometers thick. It is noted that the extent to which the grain-boundary oxidation differs from the alloy surface oxidation depends on the Cr content of the alloy. It is also considered that the grain-boundary oxidation behavior in different Ni–Cr alloys changes as a function of Cr content.  相似文献   

12.
The isothermal oxidation behaviour of a series of quinary Ni–Co–Al–Ti–Cr alloys were studied at 800 °C. Alloys with higher Cr concentrations exhibited lower mass gain after 100-h exposure, as did the alloys richest in Ni and Al for a given Cr concentration. Extensive internal oxidation and nitridation was also observed in all alloys, except those containing the highest concentrations of Ni and Al. All alloys studied generated continuous chromium oxide layers, beneath which alumina particles were observed. Compositional analysis of the subscales identified shallower Cr concentration gradients in alloys containing equiatomic levels of Ni and Co, suggesting increased availability of Cr in the alloy. Thermodynamic calculations confirmed that these alloys contained higher concentrations of Cr in their γ matrices as a result of a combination of both the elemental partitioning behaviour and the increased mole fraction of γ′ precipitates forming in the alloy.  相似文献   

13.
Du  H.L.  Datta  P.K.  Griffin  D.  Aljarany  A.  Burnell-Gray  J.S. 《Oxidation of Metals》2003,60(1-2):29-46
Attempts have been made to improve the high-temperature corrosion behavior of an intermetallic alloy, Ti–46.7Al–1.9W–0.5Si, in an H2/H2S/H2O atmosphere at 850°C using AlTiN coating with and without CrN and NbN diffusion barriers. The oxidation and sulfidation behavior of the uncoated Ti–46.7Al–1.9W–0.5Si alloy followed protective kinetics with a parabolic rate constant of 6×10–11 g2/cm4/s. A multi-layered scale developed: an outer rutile (TiO2) layer, a continuous layer of -Al2O3 beneath the rutile layer, and an inner TiS layer, in which pure W was scattered. Fast outward diffusion of Ti within the substrate resulted in the formation of a zone of high concentration of aluminum (TiAl3 and TiAl2) between the scale and substrate.The use of an AlTiN coating greatly increased the oxidation and sulfidation resistance of Ti–46.7Al–1.9W–0.5Si. The use of NbN and CrN diffusion barriers further enhanced its corrosion resistance. The protection of the double-layer coatings persisted even after 240 hr exposure. However the mismatch of thermal expansion coefficients between the coating and substrate led to the development of cracks in some locations within the coatings. A 2.5 m thick AlTiN coating on the Ti–46.7Al–1.9W–0.5Si substrate with an embedded defect was modeled using the general finite element (FE) program ABAQUS. The modeling results showed rapid mode I failure of the coating at a temperature of 774°C. The through-fracture of the nitride film caused the nitride coating to shrink back leading to delamination around the crack in the nitride coating. The cracks formed acted as diffusion paths, for the ingress of oxygen and sulfur species and the outward diffusion of substrate elements, which resulted in the formation of nodular corrosion products with similar morphologies and microstructures to the uncoated alloy in those locations where cracks developed.  相似文献   

14.
JOM - The oxidation kinetics of a Cr3Si-Cr7C3/SiC/SiC-coated C/SiC were comparatively investigated in dry and wet air at 1300°C under 1 atm. After oxidation for 10 h, Cr2O3...  相似文献   

15.
A series of Ni–Cr–Al alloys was subjected to thermal cycling to 1100°C in air for up to 260 1-hr cycles. All alloys exhibited poor corrosion resistance. Repeated scale spallation led to subsurface alloy depletion in aluminum and, to a lesser extent, chromium. This caused transformation of the prior alloy three-phase structures (-Cr+-NiAl+-Ni) to single-phase -nickel solution. Destruction of the external scale allowed gas access to this metal, which was able to dissolve both oxygen and nitrogen. Inward diffusion of the two oxidants led to development of a complex internal-precipitation zone: Al2O3 and Cr2O3 beneath the surface, followed by Al2O3, then AlN, then AlN+Cr2N, and, finally, AlN alone in the deepest region. This distribution is shown to reflect the relative stabilities of the precipitates and the higher permeability of nitrogen. Diffusion-controlled kinetics were in effect initially, but mechanical damage to the internal-precipitation zone led to more rapid gas access and approximately linear kinetics in the long term.  相似文献   

16.
Wang  Erpeng  Sun  DuanJun  Liu  Haifei  Lu  Mingyang  Guo  Wen  Zheng  Bingxin  Zhang  Xiuhai 《Oxidation of Metals》2019,92(3-4):151-166
Oxidation of Metals - In order to explore effect of silicon on the oxidation resistance of Ni-based superalloys, the cyclic oxidation behavior of Ni–15Cr–5Al–xSi...  相似文献   

17.
Zschau  H.-E.  Gauthier  V.  Schumacher  G.  Dettenwanger  F.  Schütze  M.  Baumann  H.  Bethge  K.  Graham  M. 《Oxidation of Metals》2003,59(1-2):183-200
High-temperature oxidation resistance of gamma titanium aluminides can be achieved by the formation of a continuous scale of slowly growing Al2O3. The formation of such a scale was favored by the addition of small amounts of fluorine. It is shown that fluorine can have a beneficial effect on oxidation resistance in a certain F-range which is quantified by thermodynamic calculations and by experimental investigations. It is assumed that the F-effect offers a significant potential for improvement of the oxidation resistance of technological TiAl alloys.  相似文献   

18.
Niu  Y.  Yan  R. Y.  Fu  G. Y.  Wu  W. T.  Gesmundo  F. 《Oxidation of Metals》1998,49(1-2):91-114
The corrosion of pure yttrium and of two Fe-basealloys containing approximately 15 and 30 wt.% Y wasstudied at 600-800°C in H2-CO2mixtures providing an equilibrium oxygen pressure of10-24 atm at 600°C and 10-20 atm at 700 and800°C. The corrosion of yttrium under these lowoxygen pressures resulted in the growth ofY2O3 scales and presented twoapproximately parabolic stages at 800°C, while at 600-700°C it was faster andnonprotective. The corrosion of the two alloys followedapproximately the parabolic rate law, except for Fe-15Yat 600°C which oxidized nearly linearly. At 600 and700°C, when the gas-phase oxygen pressure was in thefield of stability of iron oxide, the alloys formed alsoa thin external Fe3O4 layer, whileat 800°C, when the oxygen pressure was below thestability of FeO, a thin outermost layer of pure iron wasobserved to form. Under all conditions a region ofinternal oxidation formed in the alloy, in which theyttrium-rich phases were transformed into a mixture ofiron metal and oxides, which included double Fe-Yoxides as well as Y2O3. Themicrostructure of the internal-oxidation region followedclosely that of the original alloys, which moreover didnot undergo any yttrium depletion. These results are examinedby taking into account the low solubility of yttrium iniron and the presence of intermetallic compounds in thealloys.  相似文献   

19.
THE COMMERCIAL ALLOY STEELS containingtypically9-12wt.%Cr and1wt.%Mo are low costmaterials developed for critical strength engineeringapplications at temperatures up to700°C[1-2].Thecomposition and microstructure of these materials arenormally optimised to provide the required mechanicalstrength and creep/fatigue resistance.However,thehigh temperature oxidation resistance is often notsufficient to prevent premature failure caused byoxidation degradation,particularly in high temperat…  相似文献   

20.
Failure of furnace parts composed of stainless steel or nickel-base alloys has been observed following treatment of gallium-containing compounds at 800 to 1200°C. This work examines the effect of gallium suboxide (Ga2O) and gallium oxide (Ga2O3) on the chemical and mechanical properties of 304 SS, 316 SS, and Hastelloy C-276 in an effort to elucidate a failure mechanism. Results indicate that all three materials are subject to attack by gallium compounds. Elemental segregation, oxidation, and Ga uptake all occur following exposure. Ga2O gas appears to play the dominant role in alloy attack under reducing conditions. Increasing temperature is shown to increase the magnitude of attack, as measured by oxide thickness and gallium-metal uptake. Calculations of the system thermodynamics suggest that Cr, Mn, Si, and V alloying components are responsible for metal oxidation and concurrent gallium absorption. A homogeneous, large (>30 wt.%) gallium uptake resulted in brittle failure of 304 SS. Therefore, exposure to gallium compounds can result in premature failure of iron- and nickel-base structural alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号