首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
信息快递     
我国表面纳米技术的新突破 北京科技大学表面纳米技术工程中心传出信息,表面纳米技术的研究近期已取得重大突破,有望率先进入工业化应用阶段。 据介绍,表面纳米技术是将一些材料制备成纳米级的粉末固定在物体的表面,从而使材料获得新的功能。表面纳米技术还可制成隐身吸波材料,具有广泛的应用前景。从某种意义上说,纳米表面材料的研究、开发与应用是整个纳米材料研究的一个战略制高点,已成为纳米材料研究与应用的重点方  相似文献   

2.
《纳米科技》2005,2(5):53-53
近日在北京科技大学成立的表面纳米技术工程研究中心传来信息,表面纳米技术的研究近期已取得重大突破,有望率先进入工业化应用阶段。  相似文献   

3.
《计测技术》2009,29(3)
德国弗劳恩霍夫激光技术研究所成功研制出400W功率的飞秒激光器,有望在超高精度材料加工上得到工业化应用。 在医疗技术、微电子、航空航天和太阳能技术领域,高精度薄膜材料剪切、纤维增强材料打眼或陶瓷部件表面构造都需要使用飞秒激光器。  相似文献   

4.
无机介孔材料作为一种新型的纳米结构材料,在催化、分离、纳米技术等领域中具有潜在的应用前景。作为模板剂的表面活性剂在介孔材料的合成中起着十分重要的作用。本文综述了传统与非传统表面活性剂在硅基介孔材料合成方面的研究进展。阐述了阳离子、阴离子、两性、非离子等传统表面活性剂以及有机小分子、离子液体和新型硅源等非传统表面活性剂作为模板剂制备介孔材料的现状。  相似文献   

5.
综述了近年来纳米技术在相变材料中的应用进展,总结了相变材料制备过程中不同的复合方法,重点介绍了在相变微胶囊中的应用,讨论了纳米技术应用中存在的难题及解决方法,为纳米复合相变材料的进一步发展提供参考。  相似文献   

6.
电子陶瓷材料的纳米尺寸效应、纳米技术以及代表纳米特征的相关特征技术变得日益重要。本文讨论了电子陶瓷材料领域的纳米技术研究进展以及将来的发展趋势。首先阐述了纳米氧化物陶瓷的尺寸效应,然后讨论纳米结晶陶瓷的制备方法和应用,最后叙述在纳米技术与半导体技术发展中并驾齐驱的集成陶瓷薄膜技术的发展趋势。  相似文献   

7.
纳米技术在微波吸收材料中的应用   总被引:9,自引:2,他引:7  
刘飚  官建国  王琦  张清杰 《材料导报》2003,17(3):45-47,58
在概述了纳米技术的基础上,着重论述了纳米吸波材料的研究和应用的现状,同时,初步探讨了纳米吸波材料可能的吸波机制。指出将纳米技术引入吸波材料的研究开发,可以制备出宽频、高效、质轻、层薄的多频谱吸收的新型吸波材料。  相似文献   

8.
消息报道     
《化工新型材料》2013,(6):186-188
低维有机材料纳米生物传感器研究获新进展纳米技术和生物技术是21世纪的两大领先技术,在这两者之间存在着许多技术交叉。其中,纳米生物传感技术将有望成为新兴产业。它是一个由生  相似文献   

9.
纳米材料是近年来材料领域的热点,已被应用于多个学科和领域。由于纳米材料比普通材料表面原子多,比表面积大,表面能高,具有较高的化学活性,使得纳米技术在国内外推进剂领域倍受关注,纳米催化剂也成为了研究热点。文章主要就国内外近年来纳米技术在推进剂燃速催化剂方面的应用研究工作进行了论述,指出所存在的问题和改进措施,并对其应用前景进行了展望。  相似文献   

10.
炭膜以其出色的气体分离性能和良好的稳定性受到广泛关注,但其制备难度大、渗透率低、强度差等缺点制约着工业化应用。将炭膜负载于多孔基体材料形成复合膜,是解决这些问题的有效方法之一,但也对基体材料(特别是其表面性能)提出了较高要求,其中,高效、低成本的基体表面修饰技术成为关键。综述紧密结合多孔材料负载型炭膜的特点,从材料选择、常规孔径测量、表面孔径分析、表面修饰工艺等方面对炭膜基体材料进行评述,并依次对炭膜前驱体材料、前驱体涂层、炭化、后处理等关键制备工艺环节进行了总结。  相似文献   

11.
正纳米技术已成为国内外高科技产业竞争的制高点。未来10~20年,以纳米技术为代表的新兴科技,将有望引发一场新的技术革命,给材料、高端制造、新一代信息技术、生物、能源和环境等领域带来重大变革。发展纳米技术、抢占发展先机,不仅是我国提升国家高端制造业核心竞争力的重要手段,也是促进我国工业转型升级,迈向制造强国的必要途径。2015年7月,美国国家航空航天局(NASA)正式发布《2015技术路线图》,重点关  相似文献   

12.
核壳吸波材料的研究进展   总被引:1,自引:0,他引:1  
核壳吸波材料作为一种新型复合吸波材料,与单一类型的吸波材料相比在结构、吸波性能和应用上有着明显优势,本文总结了核壳吸波材料的基本类型、制备方法及提出了一种新的制备方法-自反应淬熄+表面改性法。指出核壳吸波材料有望满足新型吸波材料"薄、轻、宽、强"的要求,并对今后核壳吸波材料的研究提出展望。  相似文献   

13.
利用聚多巴胺可在多种不同材料的表面结合其他分子的特性,将具有杀菌作用的三氯生分子有效地固载于医用缝合线表面形成抗菌涂层。研究结果显示,涂层使表面三氯生可有效地固载于医用缝合线表面,并缓慢释放。金黄色葡萄球菌和大肠杆菌抗菌实验显示,有抗菌涂层的缝合线表面具有显著的抗菌效应。该种涂层制备方法及涂层有望广泛应用于不同类型的医用缝合线的表面作抗菌处理。  相似文献   

14.
罗婷  任山 《材料导报》2006,20(2):50-53
综述了形成超晶格结构、纳米线(或纳米管)和纳米复合结构3种纳米技术在提高热电材料性能(ZT值)上的研究现状、存在的困难及发展趋势,同时指出纳米技术在提高热电材料性能上的应用还需要进一步完善理论模型,优化样品制备的实验手段,了解材料微观结构以及确定结构与性能之间的关系.  相似文献   

15.
如何有效控制方钴矿基热电材料的制备成本成为其商业化应用的瓶颈。本课题组采用一种简单并且可放量的方法来制备n型填充方钴矿热电材料。该法由感应熔融淬、火和放电等离子烧结(SPS)组成,制备周期(少于30 min)远小于传统制备方法:电阻炉熔融(超过24 h),退火(1 w)和SPS。该法同传统制备工艺相当,制备的方钴矿块体材料具有相对均匀的物相成份和组织结构,以及良好的热电性能,这得益于将经历感应熔融、淬火冷凝工艺形成的Sb/CoSb/CoSb_2包晶偏析结构破坏,能同时实现快速反应和致密化。良好的热电性能和较少的生产周期及能耗,使该法有望发展成为具有潜在应用前景的填充方钴矿热电材料工业化制备工艺。  相似文献   

16.
如何有效控制方钴矿基热电材料的制备成本成为其商业化应用的瓶颈。本课题组采用一种简单并且可放量的方法来制备n型填充方钴矿热电材料。该法由感应熔融淬、火和放电等离子烧结(SPS)组成, 制备周期(少于30 min)远小于传统制备方法: 电阻炉熔融(超过24 h),退火(1 w)和SPS。该法同传统制备工艺相当, 制备的方钴矿块体材料具有相对均匀的物相成份和组织结构, 以及良好的热电性能, 这得益于将经历感应熔融、淬火冷凝工艺形成的Sb/CoSb/CoSb2包晶偏析结构破坏, 能同时实现快速反应和致密化。良好的热电性能和较少的生产周期及能耗, 使该法有望发展成为具有潜在应用前景的填充方钴矿热电材料工业化制备工艺。  相似文献   

17.
TiAl合金具有优异的高温力学性能,可以作为Ni基高温合金的轻量化替代材料,但氧化和磨损等行为限制了TiAl合金的高温服役时间,不利于工业化应用。通过在TiAl合金表面沉积涂层,可以使材料兼具基体的力学性能和涂层材料的表面性能,以提高TiAl合金适应不同服役环境的能力,进而拓展其应用范围。列举了TiAl合金使用的涂层材料应具有的性质;介绍了常见涂层的制备方法;以涂层成分分类,分别总结了不同涂层体系的研究现状,并展望了制备工艺和涂层性能的发展趋势。  相似文献   

18.
以壳聚糖为基体,电气石为分散相,采用溶液纺丝法制备电气石/壳聚糖复合纤维,利用光学显微镜、扫描电镜以及红外光谱仪对材料进行表征。电气石/壳聚糖复合纤维与人骨肉瘤细胞株(MG63)体外共培养,初步评价了材料的细胞相容性。结果显示,电气石颗粒在复合纤维中分散均匀且被壳聚糖包裹,纤维表面无裸露电气石。细胞在电气石/壳聚糖复合纤维表面黏附及生长增殖状况良好,材料对细胞无明显毒性。该材料有望成为一种良好的创伤修复敷料。  相似文献   

19.
复合材料领域中的纳米技术进展   总被引:29,自引:8,他引:21       下载免费PDF全文
纳米技术是当代制备材料的新技术,本文作者概要地叙述了纳米粒子的结构特征,并介绍了五种纳米复合材料制备技术——直接分散法、 原位聚合法、前驱体法、 原位插入聚合法、sol-gel技术的机理和特点,及所制备材料的性能,并对纳米复合高聚物进行前途展望。   相似文献   

20.
据媒体报导,日本原子能研究开发机构日前开发出一种正电子纳米显微新技术。该技术可利用正电子束,对表面纳米物质内部的原子排列进行精密观测。这项技术有助于开发新的表面纳米技术。表面纳米技术是一种将纳米材料技术与表面技术交叉而形成的高新技术,指通过表面技术处理纳米材料,使金属或非金属表面形成纳米层。这种纳米层具备高硬度、耐磨:耐腐蚀和耐高温等特性,其组成物质被称为表面纳米物质。表面纳米物质是未来半导体产业的尖端材料,高精度显微技术是研究这种尖端材料的首要工具。实验表明,由于电荷的斥力,带正电荷的正电子束难以进入物体内部,而是在物体表面被全部反射。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号