首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Interest in the possibility of storing and transporting natural gas in the form of clathrate hydrates has been increasing in recent years, particularly in some gas-importing and exporting countries. The technologies necessary for realizing this possibility may be classified into those relevant to the four serial processes——(a) the formation of a hydrate, (b) the processing (dewatering, pelletizing, etc.) of the formed hydrate, (c) the storage and transportation of the processed hydrate, and (d) the regasification (dissociation) of the hydrate. The technological development of any of these processes is still at an early stage. For hydrate formation, for example, various rival operations have been proposed. However, many of them have never been subjected to actual tests for practical use. More efforts are required for examining the different hydrate-formation technologies and for rating them by comparison. The general design of the processing of the formed hydrate inevitably depends on both the hydrate-ormation process and the storage/transportation process, hence it has a wide variability. The major uncertainty in the storage-process design lies in the as-yet unclarified utility of the "self-preservation" effect of the naturalgas hydrates. The process design as well as the relevant cost evaluation should strongly depend on whether the hydrates are well preserved at atmospheric pressure in large-scale storage facilities. The regasification process has been studied less extensively than the former processes. The state of the art of the technological development in each of the serial processes is reviewed, placing emphasis on the hydrate formation process.  相似文献   

2.
Recently ionic liquids(ILs) are introduced as novel dual function gas hydrate inhibitors. However, no desired gas hydrate inhibition has been reported due to poor IL selection and/or tuning method. Trial error as well as selection based on existing literature are the methods currently employed for selecting and/or tuning ILs. These methods are probabilistic, time consuming, expensive and may not result in selecting high performance ILs for gas hydrate mitigation. In this work, COSMO-RS is considered as a prescreening tool of ILs for gas hydrate mitigation by predicting the hydrogen bonding energies(E_(HB)) of studied IL inhibitors and comparing the predicted E_(HB) to the depression temperature(?) and induction time. Results show that, predicted EHBand chain length of ILs strongly relate and significantly affect the gas hydrate inhibition depression temperature but correlate moderately(R = 0.70) with average induction time in literature. It is deduced from the results that, ? increases with increasing IL EHBand/or decreases with increasing chain length. However, the cation–anion pairing of ILs also affects IL gas hydrate inhibition performance. Furthermore, a visual and better understanding of IL/water behavior for gas hydrate inhibition in terms of hydrogen bond donor and acceptor interaction analysis is also presented by determining the sigma profile and sigma potential of studied IL cations and anions used for gas hydrate mitigation for easy IL selection.  相似文献   

3.
次氯酸钙对水合物中甲烷储气量的影响   总被引:4,自引:1,他引:3       下载免费PDF全文
1 INTRODUCTION At present,natural gas accounts for 3% of the total energy consumption in China.It will go up to 5% in 2005 and 8% in 2010. Natural gas storage is a subject of great interest to many industries and particularly to transportation.Compressed natural gas,liquefied natural gas and adsorbed natural gas are techniques widely used.The possibility of developing a convenient storage system based on hydrate has been explored for about ten years around the world[1-5].Gudmundsson[1] has focused on the storage and transportation of gas as hydrate at atmospheric pressure since 1990.Khokhar[2] used 1,3-dimethylcyclohexane and polyvinyl-pyrrolidone as additives to lower hydrate formation pressure. Saito[3] surveyed the effects of tetrahydrofuran and acetone.Rogers[3] used sodium dodecyl sulfate as accelerator to natural gas hydrate formation. In this work,the effects of calcium hypochlorite on hydrate formation are investigated.The data show that it can lower the degree of supercooling and enhance the relative cage occupancy.  相似文献   

4.
水合物法分离H2+CH4体系的模拟计算   总被引:1,自引:0,他引:1       下载免费PDF全文
冯英明  陈光进  马庆兰 《化工学报》2004,55(9):1541-1545
This paper presents two novel conceptions in multi-stage hydrate separation technology for H2 CH4 system, i.e. the multi-stage equilibria adsorption and the reaction adsorption. It is assumed that there already exists clathrate structure before the hydration reaction, and the hydration reaction is taken as gaseous adsorption in the crystal structure of hydrate. During the simulation of multi-stage equilibria adsorption, gases and water interact on every equilibrium stage till establishing full equilibria, wherein the gases that just entered one stage are in equilibrium with the liquid phase of the previous stage, and the water that just entered one stage is in equilibrium with the gas phase of the previous stage as well. A kinetic model of hydrate growth for methane is introduced into the reaction adsorption so that this simulation is closer to the reality. As hydrogen doesn‘t react with water to form hydrate, the amount of hydrogen adsorption is calculated according to the proportion of methane and hydrogen adsorbed in the small cavities. Simultaneously, the plate column is employed as an example, where the gas-hydrate phase loads and hydrogen mole fraction are calculated by the multi-stage equilibria adsorption and reaction adsorption methods, and the results calculated by the two said methods are compared.  相似文献   

5.
The findings were presented from laboratory investigations on the hydrate formation and dissociation processes employed to recover methane from coal mine gas.The separation process of coal mine methane(CMM) was carried out at 273.15K under 4.00 MPa.The key process variables of gas formation rate,gas volume stored in hydrate and separation concentration were closely investigated in twelve THF-SDS-sponge-gas systems to verify the sponge effect in these hydrate-based separation processes.The gas volume stored in hydrate is calculated based on the measured gas pressure.The CH4 mole fraction in hydrate phase is measured by gas chromatography to confirm the separation efficiency.Through close examination of the overall results,it was clearly verified that sponges with volumes of 40,60 and 80 cm 3 significantly increase gas hydrate formation rate and the gas volume stored in hydrate,and have little effect on the CH4 mole fraction in hydrate phase.The present study provides references for the application of the kinetic effect of porous sponge media in hydrate-based technology.This will contribute to CMM utilization and to benefit for local and global environment.  相似文献   

6.
A new combined desulfarizatinn/denitraticon (DeSOx/DeNOx) procees was teeted in this study. The procees uses the so-called powder-partlcle fluidized bed (PPFB) as the major reactor in which a coarse DeNOx catalyst, several hundrsd micrometers in size, is fluidized by flue gas as the fluidization medium particles while a contlnuogsly supplied fine DeSOx sorbent, several to tens of micrometers in dianteter, is entrained with the flue gas. Ammonin for NOx reduction is fed to the bottom of the bed, thus, SOx and NOx are simultaneously removed in the single reactor.By adopting a model gas, SO2-NO-HaO-N2-air, to simulate actual flue gas in a laboratory-scale PPFB, simultaneous SO2 and NO removals were explored with respect to various gas components of flue gas. It was found that the vaxlations of SO2 removal with concentrations (fractions) of oxygen, water vapor, SO2 and NO in flue gas are little affected by the simultaneous NOx reduction. However,the dependencles of NO removal upon such gas components are clveely related to the inter-actions between DeSOx sorbent and DeNOx catalyst.  相似文献   

7.
Three gas separation technologies,chemical absorption,membrane separation and pressure swing adsorption,are usually applied for CO2 capture from flue gas in coal-fired power plants.In this work,the costs of the three technologies are analyzed and compared.The cost for chemical absorption is mainly from $30 to $60 per ton(based on CO2 avoided),while the minimum value is $10 per ton(based on CO2 avoided).As for membrane separation and pressure swing adsorption,the costs are $50 to $78 and $40 to $63 per ton(based on CO2 avoided),respectively.Measures are proposed to reduce the cost of the three technologies.For CO2 capture and storage process,the CO2 recovery and purity should be greater than 90%.Based on the cost,recovery,and purity,it seems that chemical absorption is currently the most cost-effective technology for CO2 capture from flue gas from power plants.However,membrane gas separation is the most promising alternative approach in the future,provided that membrane performance is further improved.  相似文献   

8.
Progress of Gas Hydrate Studies in China   总被引:3,自引:0,他引:3  
A brief overview is given on the gas hydrate-related research activities carried out by Chinese researchers in the past 15 years. The content involves: (1) Historical review. Introducing the gas hydrate research history in China; (2) Gas hydrate research groups in China. There are nearly 20 groups engaged in gas hydrate research now; (3) Present studies. Including fundamental studies, status of the exploration of natural gas hydrate resources in the South China Sea region, and development of hydrate-based new techniques; (4) Future development.  相似文献   

9.
A three stage equilibrium model is developed for coal gasification in the Texaco type coal gasifiers based on Aspen Plus to calculate the composition of product gas, carbon conversion, and gasification temperature. The model is divided into three stages including pyrolysis and combustion stage, char gas reaction stage, and gas phase reaction stage. Part of the water produced in the pyrolysis and combustion stage is assumed to be involved in the second stage to react with the unburned carbon. Carbon conversion is then estimated in the second stage by steam participation ratio expressed as a function of temperature. And the gas product compositions are calculated from gas phase reactions in the third stage. The simulation results are consistent with published experimental data.  相似文献   

10.
环戊烷水合物平衡数据   总被引:5,自引:1,他引:4       下载免费PDF全文
In the oil and gas industry, it is important to determine hydrate phase boundary for avoiding hydrate formation. In general n-butane is regarded as the heaviest hydrocarbon hydrate. But for oil and gas condensate systems, it has been found that some hydrocarbons heavier than n-butane could enter the large cavity of structure-II hydrate due to their effective van der Waal's diameter. The hydrate formation characteristics of benzene[1], cyclohexane[2], and cyclopentane and neopentane in their binaries/tern-aries with methane or/and nitrogen have been reported[3]. Ripmeester et al[4] pointed out that cyclopentane could form gas hydrates without a help gas. However there are no further experimental data to support it.  相似文献   

11.
气体水合物技术在天然气固态储运、CO2捕获与封存等领域具有广阔的应用前景。高效快速制备水合物是水合物应用技术产业化的关键技术之一。从成核机理、相平衡、传热和传质等角度简述了气体水合物快速生成机理,回顾了常见的搅拌、喷淋和鼓泡等机械扰动强化气体水合物快速生成方法的基本原理和特性。依据强化传质传热领域内的新进展,进一步阐述了新型机械扰动强化气体水合物快速生成方法的基本原理和特性,重点综述了流化床、超声波、超重力、撞击流等技术的研究进展。从耗气率、水合物生成速率、总能耗、气体转化率等角度分析评价了各种机械扰动强化气体水合物快速生成方法的优缺点。总体来说,目前各种机械扰动强化气体水合物生成技术仍处于实验室阶段,传统的搅拌、喷淋和鼓泡强化技术生成速率较低;新型的流化床、超声波、超重力和撞击流等技术也存在各种不同的缺点,有待进一步优化改进。同时指出探究微观成核机理、开发新型易固液分离的气体水合物生成系统以及构建水合物反应器评价体系等是未来气体水合物快速生成相关研究中需要进一步解决的问题。  相似文献   

12.
丁二烯过氧化物的生成、危害及安全性研究进展   总被引:2,自引:0,他引:2  
综述了国内外丁二烯过氧化物研究进展,主要包括丁二烯过氧化物的危害性、成因、危险评价和热稳定性,并对今后的研究方向进行了展望。  相似文献   

13.
Gas hydrates have drawn global attentions in the past decades as potential energy resources. It should be noted that there are a variety of possible applications of hydrate-based technologies, including natural gas storage, gas transportation, separation of gas mixture, and seawater desalination. These applications have been critically challenged by insufficient understanding of hydrate formation kinetics. In this work, the literatures on growth kinetic behaviors of hydrate formation from water-hydrocarbon were systematically reviewed. The hydrate crystal growth, hydrate film growth and macroscopic hydrate formation in water system were reviewed, respectively. Firstly, the hydrate crystal growth was analyzed with respect to different positions, such as gas/liquid interface, liquid–liquid interface and gas–liquid–liquid system. Secondly, experimental and modeling studies on the growth of hydrate film at the interfaces between guest phase and water phase were categorized into two groups of lateral growth and thickening growth considering the differences in growth rates. Thirdly, we summarized the promoters and inhibitors reported (biological or chemical, liquid or solid and hydrophobic or hydrophilic) and analyzed the mechanisms affecting hydrate formation in bulk water system. Knowledge gaps and suggestions for further studies on hydrate formation kinetic behaviors are presented.  相似文献   

14.
Natural gas hydrate (NGH) is a highly efficient and clean energy, with huge reserves and widespread distribution in permafrost and marine areas. Researches all over the world are committed to developing an effective exploring technology for NGH reservoirs. In this paper, four conventional in-situ hydrate production methods, such as depressurization, thermal stimulation, inhibitor injection and CO2 replacement, are briefly introduced. Due to the limitations of each method, there has been no significantly breakthrough in hydrate exploring technology. Inspired by the development of unconventional oil and gas fields, researchers have put forward some new hydrate production methods. We summarize the enhanced hydrate exploiting methods, such as CO2/N2–CH4 replacement, CO2/H2–CH4 replacement, hydraulic fracturing treatment, and solid exploration; and potential hydrate mining techniques, such as self-generating heat fluid injection, geothermal stimulation, the well pattern optimization of hydrate exploring. The importance of reservoir stimulation technology for hydrate exploitation is emphasized, and it is believed that hydrate reservoir modification technology is a key to open hydrate resources exploitation, and the major challenges in the process of hydrate exploitation are pointed out. The combination of multiple hydrate exploring technologies and their complementary advantages will be the development trend in the future so as to promote the process of hydrate industrialization.  相似文献   

15.
蓄冷空调及气体水合物蓄冷技术   总被引:1,自引:0,他引:1  
从蓄冷空调的应用背景出发,简述了蓄冷空调技术的发展与现状,并在此基础上详细介绍了气体水合物蓄冷技术,从气体水合物蓄冷工质的选择、气体水合物结晶\熔解特性改善及气体水合物蓄冷装置设计3个方面对目前的研究现状进行了描述,最后提出了一些今后应该重点展开的研究方向  相似文献   

16.
天然气水合物因其储量巨大、清洁无污染而成为未来最具潜力的清洁能源之一,CO2置换法可实现天然气水合物的安全开采和温室气体的地层封存。然而,多孔介质中CO2-CH4水合物的置换过程存在反应周期长、速率慢、效率低等特点,已成为制约天然气水合物高效开采的瓶颈问题。本文全面综述了多孔介质体系中CO2-CH4水合物的置换特性,分析了CO2-CH4水合物的置换机理及其动力学过程。在此基础上,详述了不同因素对多孔介质中CO2-CH4水合物置换效率的影响规律及强化机理,包括热刺激、置换压力、小分子气体、化学添加剂等的作用机理及其规律。最后指出了多孔介质体系中CO2-CH4水合物置换过程强化技术存在的不足和未来的发展方向。对多孔介质体系中CO2-CH4水合物置换过程的强化机理及其动力学机制的认识仍需进一步研究。  相似文献   

17.
Natural gas hydrate (NGH) is considered as an alternative energy resource in the future as it is proven to contain about 2 times carbon resources of those contained in the fossil energy on Earth. Gas hydrate technology is a new technology which can be extensively used in methane production from NGH, gas separation and purification, gas transportation, sea-water desalination, pipeline safety and phase change energy storage, etc. Since the 1980s, the gas hydrate technology has become a research hotspot worldwide because of its relatively economic and environmental friendly characteristics. China is a big energy consuming country with coal as a dominant energy. With the development of the society, energy shortage and environmental pollution are becoming great obstacles to the progress of the country. Therefore, in order to ensure the sustainable development of the society, it is of great significance to develop and utilize NGH and vigorously develop the gas hydrate technology. In this paper, the research advances in hydrate-based processes in China are comprehensively reviewed from different aspects, mainly including gas separation and purification, hydrate formation inhibition, sea-water desalination and methane exploitation from NGH by CH4-CO2 replacement. We are trying to show the relevant research in China, and at the same time, summarize the characteristics of the research and put forward the corresponding problems in a technical way.  相似文献   

18.
挥发性有机物的控制技术进展   总被引:2,自引:0,他引:2  
大气与室内中的挥发性有机物(VOCs)对生态环境和人类健康都具有较大的危害,研究VOCs的控制具有重要意义。在介绍VOCs的特点、危害的基础上,详细介绍了多种VOCs的末端控制处理方法和技术,包括吸附法、吸收法、冷凝法、膜分离法、生物控制法、燃烧(催化燃烧)法、低温冷离子控制法、光催化法等方法的研究进展,并比较了不同方法在对设备要求、稳定性、操作难易等方面的优缺点。  相似文献   

19.
The global energy system is characterized by a gradual de-carbonization and move to cleaner burning technologies: from wood to coal to oil and to natural gas. A final destination characterized by the term“hydrogen economy” is desired. Gas hydrate found in the earth’s crust is considered a source of natural gas that is essentially 100% methane (CH4) gas. Natural gas hydrate estimates worldwide range from 10,000 to 40,000 trillion cubic meters (TCM). Efforts are underway to exploit this resource. These methane hydrates in the earth’s crust also have the potential to be a significant factor in global climate change. Moreover, gas hydrates offer opportunities for the development of innovative technologies (separation of CO2 from CO2/N2 and CO2/H2 mixtures, CO2 sequestration, natural gas transportation and storage and H2 storage). In this work we assess the progress towards exploitation of gas hydrates as a resource for methane (cleaner energy) and summarize the state of the art with respect to the role of gas hydrates in the development of innovative technologies.  相似文献   

20.
气体水合物分解动力学研究现状   总被引:8,自引:0,他引:8  
对气体水合物分解动力学研究现状进行了文献综述,总结了对气体水合物分解动力学的基础研究和应用研究. 基础研究着眼于气体水合物本征分解动力学研究和传热、传质对分解的影响. 应用研究主要介绍了针对天然气储运技术、多孔介质和地层水合物开采的气体水合物分解动力学研究,并展望了未来气体水合物分解动力学的研究方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号