首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《工业建筑》2016,(11):175-180
通过对10根采用高延性聚酯纤维加固技术(SRF)加固钢筋混凝土柱和1根未加固钢筋混凝土柱的轴心抗压对比试验,对高延性聚酯纤维SRF加固钢筋混凝土柱轴心受压性能进行研究,研究加固间距、混凝土强度等级、纤维带层数、柱长细比对加固效果的影响,然后推导出SRF加固钢筋混凝土柱轴心受压承载力的实用算式。试验结果表明:高延性聚酯纤维能够明显提高钢筋混凝土的承载能力,并且能改善构件的变形能力,避免构件出现脆性破坏,纤维带的加固形式和间距的大小对加固效果的影响较大,SRF加固钢筋混凝土柱的承载力和延性随着纤维层数的增多而明显提高。  相似文献   

2.
为了研究轴心压力作用下碳纤维(CFRP)布加固T形截面混凝土柱的力学性能,以9根T形柱的轴心受压试验数据为基础,采用数值模拟的方法对CFRP布约束下的T形柱的极限承载力进行分析,结果表明数值分析结果与试验结果吻合良好。在此基础上,开展了CFRP布加固T形截面柱承载能力的拓展分析,探讨CFRP布条幅宽度及净间距、混凝土强度、纵筋直径、CFRP布粘贴层数、CFRP布加固量对加固T形截面柱力学性能的影响。研究结果表明:当CFRP布用量相同时,柱的极限承载力与CFRP布条幅净间距和条幅宽度有关,在进行结构加固时不能仅考虑减小条幅净间距;混凝土强度等级的提高、纵筋直径的增加、CFRP布粘贴层数的增加以及CFRP布加固量的增加均能提高模拟柱的极限承载能力;在T形柱的翼缘与腹板转角处采用角钢锚固CFRP布,能够较好发挥CFRP布的抗拉强度,提高构件的极限承载力。  相似文献   

3.
《工业建筑》2017,(5):171-178
为了研究预应力碳纤维复材(CFRP)布加固钢筋混凝土方形截面柱的轴心受压力学性能,设计4根钢筋混凝土方形截面柱进行轴心受压试验,包括1根未加固的普通钢筋混凝土柱和3根预应力CFRP布加固的钢筋混凝土柱。通过试验获得了各试件破坏形态、受压极限承载力、轴向位移和CFRP布的应力应变曲线等试验数据,分析不同应力水平的CFRP布对钢筋混凝土方形截面柱加固后力学性能的影响。结果表明:与未加固的普通钢筋混凝土柱相比,采用预应力CFRP布加固试件的轴心受压承载力和延性均有明显的提高,提高幅度随应力水平的提高而增大;而且对CFRP施加预应力能避免纤维布的应力滞后问题,更好地发挥纤维布的高强性能。  相似文献   

4.
为研究玄武岩纤维织物网增强混凝土(BTRC)薄板对混凝土柱的约束性能,并考虑织物网层数及BTRC基体中掺入短切耐碱玻璃纤维对约束效果的影响,对4根采用BTRC加固的混凝土柱及1根对比柱进行轴心受压性能试验,分析了加固柱的破坏形态、荷载-位移曲线及变形性能等。研究结果表明:加固后柱的承载力和变形能力均有不同程度提高;2层和4层纤维织物网BTRC薄板加固的柱,其受压承载力分别提高9.45%、23.42%,极限变形分别提高19.14%、25.76%;BTRC基体中掺入短纤维后,加固柱的承载力和极限变形能力能进一步改善。  相似文献   

5.
为了研究预应力碳纤维(CFRP)布加固混凝土方形截面短柱轴心受压力学性能,根据配筋率的不同设计了3组共计12根混凝土方形截面短柱,每组包括3根预应力CFRP布加固的混凝土柱和1根普通混凝土柱。通过静载试验获得了各试件受压极限承载力、位移和预应力CFRP布应力增量等试验数据,得到了荷载作用下试件变形曲线及破坏形态,分析了预应力CFRP布应力水平和纵筋配筋率对混凝土方形截面短柱加固后的力学性能的影响。研究结果表明:采用预应力CFRP布约束混凝土柱一方面能够限制混凝土横向变形,使柱中混凝土从加固时刻起即受到环向应力,提高了混凝土极限压应变,从而显著提高柱的极限承载力,承载力提高幅度在60%以上;另一方面,由于受压柱的延性与截面配筋率有关,加固柱配筋率较低时,延性较好;反之则延性较差。  相似文献   

6.
为了研究预应力碳纤维增强复合材料(CFRP)布加固低强度混凝土轴心受压柱的力学性能,按截面配筋率不同设计制作了3组12根混凝土方形截面柱,混凝土强度均为C20,每组包括3根利用预应力CFRP布加固的混凝土柱和1根未加固的普通混凝土柱.通过对每组柱的静载试验,得到了试验柱极限承载力、轴向位移等试验数据,并利用有限元软件ANSYS建立了分析模型,对预应力CFRP布加固低强度混凝土柱进行了研究.结果表明:预应力CFRP布加固的混凝土柱在纵向受力钢筋屈服后,预应力CFRP布对混凝土的环向预压作用能够明显提高加固柱的极限承载力,且承载力提高幅度受截面配筋率及CFRP布张拉控制应力影响;对于配筋率较低的混凝土柱,利用预应力CFRP布加固后柱的承载力提高幅度随CFRP布预拉应力的提高而增大;同时能够明显提高混凝土的极限压应变,增大加固柱的轴向变形;采用预应力CFRP布加固技术能够使CFRP布较早地参与受力,充分发挥其高强度特性.  相似文献   

7.
预应力纤维布加固混凝土圆形截面短柱轴压性能试验   总被引:2,自引:0,他引:2  
为研究环向预应力纤维布加固混凝土圆形截面短柱的轴心受压性能,制作25个试件并进行轴心受压试验。试验考虑的影响因素包括:试件的混凝土强度等级、截面尺寸、箍筋间距、既有损伤及表面处理情况、纤维布种类、层数和预应力大小。试验得到了各个试件的破坏形态和应力 应变关系,进而分析了各影响因素对加固效果的影响。结果表明:与非加固试件相比,环向预应力纤维布加固试件的轴心受压承载力和延性均有明显提高;对纤维布施加预应力能避免纤维布的应力滞后,更好地发挥纤维布的高强性能;当环向预应力与纤维布的抗拉强度的比值在0~0.20范围内,试件的承载力和延性随预应力的增大而增大;当环向预应力达到纤维布抗拉强度的0.25倍时加固效果会降低,因此在工程应用中环向纤维布的预应力宜控制在纤维布抗拉强度的0~0.20倍之间。  相似文献   

8.
通过对7组粘贴玻璃纤维布(GFRP)的实心黏土砖轴心受压短柱及1组对比柱在单倚载作用下的试验研究,比较分析了不同长细比和不同FRP加固量等参数对加固砖柱的承载力、延性和破坏形态的影响.试验表明:横向粘贴GFRP布能有效地提高轴心受压短柱的承载力,柱的延性得到显著改善.  相似文献   

9.
提出了自密实混凝土与型钢联合加固混凝土柱的加固方法,对16个试件进行了静力加载试验,研究了型钢尺寸与缀板间距等因素对加固后混凝土柱的轴心受压承载力的影响。研究结果表明:采用该方法加固的混凝土柱轴心受压承载力显著提高;自密实混凝土能够将型钢和混凝土柱有效结合,使其协同工作;增大型钢截面面积与减小缀板间距均能有效提高柱的轴心受压承载力。最后,建立了联合加固混凝土柱轴压承载力计算公式。  相似文献   

10.
为研究玄武岩纤维布(BFRP)加固木柱的轴压性能,通过改变BFRP包裹层数和间隔包裹距离,对21根圆形截面短柱进行了轴心受压试验。观察试件的加载破坏过程及破坏形态,获取了试件的荷载-位移曲线和荷载-应变曲线,分析了影响木柱轴压性能的因素;采用ABAQUS有限元软件对BFRP间隔加固木柱进行了有限元模拟分析,模拟结果与试验结果吻合较好。模拟结果和试验研究表明,采用BFRP加固的木柱较未加固的木柱其承载力和位移延性性能显著提高。  相似文献   

11.
为了研究玻璃纤维增强复合材料(GFRP)约束素混凝土柱体的力学性能,进行了13组试件的轴心受压试验。主要考虑GFRP用量、倒角半径对GFRP约束素混凝土柱体的力学性能的影响,通过试件的试验过程和最终破坏形态可知,GFRP约束素混凝土柱体的强度都有一定程度的提高,延性增大,破坏过程与没包裹GFRP试件相比缓慢;由于试件的棱角处存在应力集中现象,所以随着倒角半径的增加,GFRP约束的试件强度提高幅度逐渐增加,GFRP约束不同倒角半径(0、20、35、50)素混凝土方柱试件的强度提高幅度远不如圆形截面柱,较方形截面柱分别提高了6%、14%、16.9%、20.9%。  相似文献   

12.
以再生粗骨料取代率和膨胀剂掺量为参数,完成了4个钢管约束和4个玻璃纤维增强塑料(GFRP)约束再生混凝土柱试件的偏心受压试验,对钢管约束和GFRP管约束再生混凝土试件的极限荷载和轴向变形进行了对比分析,并对试件的极限荷载试验值与计算值进行了对比。结果表明:100%再生粗骨料取代率再生混凝土试件的极限荷载比普通混凝土试件低,混凝土强度相同时,GFRP管约束再生混凝土试件偏心受压极限荷载比钢管约束试件低;膨胀剂可以提高钢管和GFRP管约束试件的偏心受压极限荷载,并且对GFRP管约束试件作用更为显著;GFRP管约束试件的变形能力比钢管约束试件大,100%再生粗骨料取代率再生混凝土试件的变形能力比普通混凝土试件大。  相似文献   

13.
GFRP套管钢筋混凝土短柱轴压力学性能试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究GFRP套管钢筋混凝土短柱的轴压力学性能,进行了22个GFRP套管钢筋混凝土短柱和6个无GFRP套管约束的钢筋混凝土短柱对比试验。研究了影响GFRP套管钢筋混凝土组合短柱轴压力学性能的主要因素,包括GFRP套管不同的受力方式、混凝土强度、纵筋配筋率等。试验结果表明:由于GFRP套管的约束,提高了核心混凝土的强度,增大了核心混凝土的变形能力;GFRP套管在不同的受力方式下,组合短柱的轴压承载力和变形基本相同;GFRP套管内配置纵筋可提高GFRP套管混凝土短柱的轴压承载力,适当提高纵筋配筋率可改善短柱的延性。根据试验结果及现有FRP管约束混凝土轴心抗压强度计算公式,建议了GFRP套管钢筋混凝土短柱承载力计算公式,计算结果与试验结果基本吻合。  相似文献   

14.
GFRP管混凝土柱抗震性能试验研究   总被引:2,自引:1,他引:1  
为了研究GFRP(玻璃纤维增强聚合物)管混凝土结构的抗震性能,对低周反复荷载作用下的4个GFRP管混凝土柱和1个无套管约束的普通混凝土柱进行试验,研究其破坏形态及滞回性能,分析混凝土强度、轴压比等因素对柱延性的影响。试验结果表明,GFRP管混凝土柱具有良好的抗震性能。  相似文献   

15.
为研究角钢螺旋筋复合约束混凝土组合柱的轴压力学性能,对26个该类组合柱试件及3个角钢约束混凝土柱对比试件进行了单调静力轴心受压试验。观察试件的破坏形态,得到试件的承载力和荷载-变形曲线。通过试件受力全过程的破坏形态、损伤演化、荷载-变形曲线、截面约束应力分布等分析角钢螺旋筋复合约束混凝土组合柱的复合约束机理和失效性态。基于Mander本构模型,通过划分不同的混凝土约束区,提出该类组合柱的轴压承载力计算方法。研究结果表明:角钢螺旋筋复合约束混凝土组合柱的轴压破坏过程及形态与角钢约束混凝土柱相似,但是其裂缝发展、混凝土剥落的过程更为缓慢;荷载-变形曲线更为饱满,损伤发展也更慢;承载力、延性和耗能能力都有显著提高;所提出轴压承载力计算方法的计算结果与试验结果吻合较好。  相似文献   

16.
王俊  刘伟庆  方海  祝露 《建筑结构》2012,(2):133-138
通过4根实心和中空的GFRP管-钢管双壁约束混凝土组合短柱轴压试验,对比分析了该组合柱的工作机理、破坏模式、复合材料管的约束效应、核心混凝土本构关系及其影响因素。研究发现,在其他条件相同的情况下,内钢管空心的构件变形能力超过实心构件,极限承载力小于实心构件,GFRP管对混凝土的约束程度低于实心构件;GFRP管径厚比越小,其对混凝土的约束效应越好。GFRP管径厚比相同的情况下,实心构件混凝土峰值应力比空心构件大,而极限应变比空心构件小。通过试验分析了约束混凝土强度模型,并采用极限平衡法推导了可用于计算实心和空心双壁约束混凝土组合柱轴压承载力的计算公式,理论计算与试验结果吻合较好。  相似文献   

17.
以煤矸石混凝土替代普通混凝土制备了GFRP管-煤矸石混凝土-钢管空心柱(GGCSC),并对GGCSC试件进行了轴心受压试验,通过研究GFRP管壁厚、空心率、钢管壁厚与混凝土类型对GGC-SC试件轴心受压性能的影响,得出试件承载力、应变及位移等试验数据;对比了GGCSC与GFRP管-普通混凝土-钢管空心柱轴心受压性能的差...  相似文献   

18.
进行了3组玻璃纤维增强复合材料(GFRP)筋混凝土短柱偏心受压破坏试验,对GFRP筋混凝土偏心受压柱的破坏形态、侧向挠度、内部筋体应变与混凝土表面的应变等试验结果进行了分析。结果表明:GFRP筋混凝土柱的破坏形式为受压破坏,随着初始偏心距的减小,GFRP筋混凝土柱的承载力有增大趋势;GFRP筋作为受压筋与混凝土的协同作用良好,且试件加载时的初始偏心距越小,混凝土与GFRP筋的协同作用越好;GFRP筋有较好的抗压性能,作为受力筋应用到混凝土受压构件中有很大的优越性。  相似文献   

19.
为研究具有预应变的SMA约束混凝土柱的轴压性能,文章通过8个SMA约束混凝土柱试件的轴压对比试验,分析不同加固量、预应变水平及增强形式对混凝土柱轴向承载能力和变形能力的影响。结果表明:预应变超弹性SMA丝的约束作用使混凝土柱由脆性破坏向延性破坏转变;混凝土柱的极限承载能力随着SMA丝加固量和预应变的增加而提高;峰值变形受SMA丝加固量的影响较大,而受预应变的影响较为有限;SMA/FRP复合约束能够显著提高混凝土柱的承载能力,但峰值变形影响不大。新型超弹性SMA约束混凝土柱研究结果可供今后类似工程结构修复加固和抗震设计提供参考。  相似文献   

20.
对4个型钢区域约束混凝土(SRCC)柱、1个普通井字箍约束混凝土(NCC)柱及1个钢筋区域约束混凝土(RCC)柱进行拟静力往复荷载对比试验,其中型钢区域约束混凝土柱设计轴压比分别为1.1,1.3及1.6,普通井字箍约束混凝土柱及钢筋区域约束混凝土柱设计轴压比为1.1,而型钢区域约束混凝土柱在1.1轴压比时,分别设置两种不同间距(70,90mm)的箍筋。对各试件滞回曲线、骨架曲线、承载力、延性和耗能性能进行分析。结果表明型钢区域约束混凝土柱受力均匀,能有效抑制贯通斜裂缝的发生,避免脆性的剪切破坏;在相同轴压比下,箍筋间距的增大使型钢区域约束混凝土柱的抗震性能降低;随轴压比的提高,型钢区域约束混凝土柱的抗剪承载力、延性、变形能力和耗能能力均增强,且明显高于普通井字箍约束混凝土柱和钢筋区域约束混凝土柱;型钢区域约束混凝土柱在高轴压比下具有良好的力学性能和抗震性能,宜加以广泛推广使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号