首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
《重型机械》2011,(6):47-47
由中国重型机械研究院有限公司自主研发的液压支架搬运车行走减速机获得国家专利局授权的发明专利,专利号ZL200810017873.8,这标志着中重院在车辆传动技术的开发上又迈出了新的一步。液压支架搬运车是煤炭行业近几年开发的新产品,行走减速机则是与其配套的一个重要部件。  相似文献   

2.
铰接车辆通过前后车体间的相对转动实现转向行驶,这种特殊的转向形式导致其转向稳定性差,转向运动控制精度要求高。针对此问题,以某四轮分布式驱动井下支架搬运铰接车为原型,构建包括车身模型、轮胎模型和单阀控双非对称缸液压转向系统在内的分布式铰接车辆11自由度非线性动力学模型,并设计基于自抗扰控制器的液压转向控制系统,用以提升铰接车辆的转向稳定性。为验证此方法的有效性,建立MATLAB/Simulink仿真模型,进行初始车速为2.5 m/s的转向分析,并在同种工况下,加入外界干扰力矩,以PID控制器为对照组,对比分析两种液压转向系统控制器的抗扰动性能。仿真结果表明:基于ADRC控制的液压转向系统的转向角度误差在0.017 rad以内,且转向角度跟踪速度快,相对于PID控制器具有更好的抗扰动性能,有效提高了铰接车辆的转向稳定性。  相似文献   

3.
针对四轮轮毂电机电动汽车转向时四轮差速问题,进行了电子差速控制研究。设计了电子差速控制策略,建立差速运动参考模型,根据四轮轮毂电机电动汽车四轮驱动力矩独立可控的优势,通过驱动力矩分配器对四轮驱动力矩进行合理分配,实现了实际轮速跟踪参考轮速,并在Matlab/Simulink里搭建了四轮轮毂电机电动汽车电子差速系统模型,通过CarSim与Matlab/Simulink联合仿真进行了验证。结果表明:电子差速差速控制策略能够有效实现转向时四轮差速控制,提高电动汽车的操纵稳定性。  相似文献   

4.
滑移装载机原地转向动力学分析   总被引:1,自引:0,他引:1  
轮式滑移装载机是一种用于小空间的实用、高效、多功能的小型工程机械。其行走转向主要由两侧的液压马达带动车轮,通过两侧的速度差实现转向。通过对ZHL3210型滑移装载机的分析,并基于车辆地面力学研究,建立轮式滑移装载机原地转向模型,分析轮式滑移装载机原地转向的原理及系统的功率特性,同时建立原地转向过程中行走液压系统的数学模型。  相似文献   

5.
针对四轮轮毂电机电动汽车转向时四轮差速问题,进行了电子差速控制研究。设计了电子差速控制策略,建立差速运动参考模型,根据四轮轮毂电机电动汽车四轮驱动力矩独立可控的优势,通过驱动力矩分配器对四轮驱动力矩进行合理分配,实现了实际轮速跟踪参考轮速,并在Matlab/Simulink里搭建了四轮轮毂电机电动汽车电子差速系统模型,通过CarSim与Matlab/Simulink联合仿真进行了验证。结果表明:电子差速差速控制策略能够有效实现转向时四轮差速控制,提高电动汽车的操纵稳定性。  相似文献   

6.
利用MATLAB/Simulink软件平台建立履带运输车差速转向仿真模型,分别从转向负载变化、液压系统及动力源3个方面研究运输车的差速转向过程,对比分析了仿真结果与试验数据,证明所建模型的合理性。并利用该仿真模型分析输入变量对该履带运输车转向半径、发动机扭矩消耗及液压系统工作压差的影响。  相似文献   

7.
多轴线转向车辆转向机构是车辆实现转向功能的核心部件,根据某矿用车对转向机构的工作要求,设计和建立了多轴线转向车辆转向机构的仿真模型,并对转向机构进行了优化,同时对液压系统进行建模,通过分析软件对液压系统的特性进行仿真分析,通过试验测试,证明所设计转向杆系及液压系统的响应特性与仿真结果吻合,达到了预期效果。  相似文献   

8.
为应对自卸车恶劣行驶工况并减轻驾驶员的操作强度,在重型载重汽车上,全液压转向系统得到普遍应用,而液压系统对转向系统性能具有重要影响。根据全液压转向系统的结构特点和性能特征,基于ADAMS搭建转向液压系统和机械机构的分析模型,针对转向、转向盘角阶跃输入、过路障等几种工况进行虚拟试验分析。针对以上工况下,转向系统的响应时间、车辆行驶过程中转向机构所受到的冲击载荷进行分析;并分析系统的结构参数对响应时间和冲击载荷等的影响。由分析结果可知:液压系统使得转向系统反应时间延长;同时,液压系统能够有效地缓冲转向机构受到的冲击载荷。在实际转向液压系统设计中,合理选择转向器与转向动力缸间的液压胶管几何尺寸,使转向液压系统既能有效地吸收车轮遇到的冲击载荷,又不至于严重影响转向系统的响应速度。  相似文献   

9.
以某矿用自卸车断开式转向梯形机构为例,利用Matlab软件对转向机构进行优化设计,并依据优化结果对关键部件进行强度校核。通过对比优化前后的转角关系曲线,结果表明优化后的转向机构在转向时左右车轮转角更加符合理论转角关系。现场转向试验验证了优化结果的正确性,使车辆转弯时车轮作无滑动的纯滚动运动。  相似文献   

10.
针对自走式田间甘蔗收集搬运车的驱动要求,设计一种液压系统,包括转运车厢升降液压系统、转运车厢翻转液压系统和转运车支腿调平液压驱动系统。利用AMESim软件建立液压系统模型,得到甘蔗转运车液压系统各执行元件的输出特性曲线。仿真与试验结果表明:利用所设计的系统,支腿、升降、倾倒液压缸运行平稳,输出参数稳定,表明该液压系统能够满足甘蔗转运作业使用要求。  相似文献   

11.
数字阀在电控液压动力转向系统中的应用研究   总被引:1,自引:0,他引:1  
电控液压动力转向(ECHPS)系统可解决大中型汽车转向轻便性和灵敏性的矛盾,使驾驶员在汽车高速行驶时获得较强的路感.本文通过研究ECHPS系统的转向特性及工作原理,提出将数字阀应用到该系统中,并由电控系统根据车速传感器提供的信号,经处理后输出PWM的占空比来控制数字阀,以达到控制反力室压力的目的,使驾驶员在不同车速下获得不同的助力特性.  相似文献   

12.
针对商用车普遍采用的液压动力转向系统(HPS)助力特性不可变的缺点,提出了一种旁通流量控制式电控液压转向系统。设计了这种转向系统的助力控制策略,研究其核心部件电液比例阀的结构原理和数学模型,采用动态面控制方法设计了一个鲁棒自适应动态面控制器。理论推导证明所设计的控制器不仅能够保证闭环系统半全局渐近稳定,输出渐近跟踪期望轨迹,而且对于系统不确定参数和外界干扰具有较强的鲁棒性。仿真结果表明,所设计的自适应动态面控制器不仅响应快、跟踪效果好、控制精度高,而且能够实现汽车低速时的转向轻便性和高速时的良好路感要求。  相似文献   

13.
为了分析自卸车液压转向系统在车辆运行过程中的性能,采用AMESim/SIMPACK联合仿真方法建立了自卸车液压转向系统的联合仿真模型,进行车辆在不同路面条件下液压转向系统分析,得到油缸位移及压力、车辆转向角的变化过程。可为车辆转向性能的预测提供一种很好的分析方法。  相似文献   

14.
针对传统液压助力转向系统的压力和流量损失问题,设计了基于负载敏感技术的液压助力转向系统。基于仿真软件AMESim对负载敏感泵和液压助力转向系统进行了建模。仿真结果表明:当在直线行驶工况下,该系统以低压、小流量的待机状态输出;当有转向需求时,系统能根据转阀开启阀度,快速调节泵出口的压力和流量,并且能够满足助力需求。基于负载敏感技术的液压助力转向系统在车辆行驶过程中能减小能量消耗,达到节能的目的。  相似文献   

15.
在台架试验的基础上,引入车载测试系统,搭建了一套可用于液压助力转向器道路试验的数据采集系统.通过转向参数测试仪、陀螺仪、雷达车速仪、应变仪、流量计以及频率电流转换器等将转向盘转角、扭矩、车辆运行参数、转向器油压、流量信号转换成模拟电压信号,进行实时采集和存储,并进行实时监控.试验中可同时采集包括转向系统及车辆运行参数在内的共13个物理量.进行了路牙试验以及圆周回转,试验的结果与理论分析相吻合,证明了该系统的可靠性.  相似文献   

16.
针对轮式工程车辆的液压转向系统,提出了由中央控制器、脉宽调制放大器、比例阀控缸、转向动力机构构成的电液转向系统的数学模型,并用MATLAB工具箱进行仿真,最后通过车辆运行实验验证了模型及仿真结果的有效性,为轮式工程车辆高性能转向系统及控制器的设计提供了重要依据。  相似文献   

17.
针对拨叉式液压舵机系统,运用AMESim软件建立舵机液压系统模型和Simulink软件建立舵机转舵扭矩模型,联合二者对转舵力矩和液压缸压差进行了仿真分析,结果表明:转舵力矩和液压缸压差随着舵角的增加而增加,转舵力矩在大舵角区时受航速和吃水影响较大,液压缸压差在小舵角区受到航速和吃水的影响较小。  相似文献   

18.
王岩  张永龙  秦绪情  徐鸣 《机床与液压》2015,43(13):149-155
静液传动液压系统可实现履带车辆无级变速、平稳转向,提高车辆机动性、同时大幅提高传动系统功率密度,在车辆传动系统中广泛应用。介绍了国内外静液驱动系统的应用及发展趋势,并通过分析和梳理,归纳了变量泵-变量马达控制理论发展中的一些重要问题,进一步探究变量泵-变量马达系统的发展趋势。  相似文献   

19.
为解决内蒙赤大白运输段因冬季频繁积雪导致线路中断的实际问题,设计与研究了一种轨道除雪车。以自主研制的轨道除雪车为研究对象,分析了轨道除雪车液压系统相关结构,设计了除雪装置液压系统。根据轨道除雪车的性能指标,对轨道除雪车液压系统主要元件进行了参数设计。在此基础上,运用液压数值分析软件Automation Studio对轨道除雪车除雪装置液压系统进行了数值分析,数值分析曲线直观地显示了集、抛雪液压马达和转向液压马达的流量、转速和压力。对比实测参数值和数值分析结果,两者最大相对误差绝对值小于12%。现场测试表明:轨道除雪车除雪高度大于3 m,除雪宽度大于3.5 m,除雪扬程大于10 m,除雪装置液压系统性能稳定,满足轨道除雪车设计指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号