首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silicon Oxycarbide Ceramic Foams from a Preceramic Polymer   总被引:6,自引:0,他引:6  
Open-cell ceramic foams were obtained from the pyrolysis, at 1000° to 1200°C under nitrogen, of a preceramic polymer (a silicone resin) and blown polyurethanes. The morphology of the expanded polyurethane was reproduced in the final architecture of the ceramic foam. The foams produced in this way consisted of an amorphous silicon oxycarbide ceramic (SiOC), having a bulk density ranging from 0.1 to 0.4 g/cm3 and variable cell size (300 to 600 µm). Young's modulus ranged from 20 to 170 MPa, and the compression strength from 1 to 5 MPa. The foams displayed excellent dimensional stability up to their pyrolysis temperature.  相似文献   

2.
A process for the production of SiOC ceramic foams has been for the first time developed through melt foaming of a siloxane preceramic polymer with the help of a blowing agent, followed by pyrolysis under an inert atmosphere. The raw material consisted of a methylsilicone resin, a catalyst (which accelerated the cross-linking reaction of the silicone resin) and a blowing agent (which generated gas above 210°C). Methylsilicone resin foams were obtained through controlling the melt viscosity around 210°C, temperature where the blowing agent started to decompose, by varying the initial molecular weight of the preceramic polymer and the amount of the catalyst. The obtained SiOC ceramic foams exhibited excellent oxidation stability up to 1000°C, as shown by thermal gravimetric analysis (TGA). As expected, the mechanical properties of the SiOC ceramic foams varied as a function of their bulk density, possessing a flexural strength up to 5.5 MPa and a compression strength up to 4.5 MPa. The main steps in the process, namely foaming and pyrolysis, were analyzed in detail. The viscosity change was analyzed as a function of temperature by the dynamic shear measurement method. The pyrolysis process of foams was analyzed by TGA coupled with infrared spectroscopy (IR).  相似文献   

3.
Thermal Shock Behavior of Silicon Oxycarbide Foams   总被引:2,自引:0,他引:2  
Silicon oxycarbide (SiOC) ceramic foams, obtained from the pyrolysis of a preceramic polymer, were subjected to thermal multiple cycles from 800°–1200°C to room temperature in a water bath. Flexural and compression strengths, as well as elastic modulus, were characterized before and after quenching. Excellent thermal shock and cycling resistance behavior was observed, with only moderate strength and stiffness degradation. The phase assemblage of the foam remained unchanged, and no crack formation in the foams was observed. However, microstructural characterization revealed the development of porosity in the struts and cell walls due to the oxidation of residual carbon in the amorphous SiOC material, thereby contributing to a small decrease in stiffness after quenching.  相似文献   

4.
Multiphase bioceramics based on wollastonite and wollastonite/hydroxylapatite (W/HAp) have been successfully prepared by the heat treatment of a filler-containing preceramic polymer. CaO-bearing precursors (Ca-carbonate, Ca-acetate, and CaO nano-particles) were dispersed in a solution of silicone resin, subsequently dried and pyrolysed in nitrogen. The reaction between silica, deriving from the oxycarbide (SiOC) residue of the silicone resin, and CaO “active filler” led to the formation of several calcium silicates, mainly consisting of wollastonite (CaSiO3), in both low and high temperature forms. The phase assemblage of the final ceramic varied with the pyrolysis temperature (varying from 1000 to 1200 °C). HAp was additionally inserted, as “passive filler” (i.e. not reacting with SiOC), for the preparation of bioceramics based on W/HAp mixtures.  相似文献   

5.
Mechanical Properties of Silicon Oxycarbide Ceramic Foams   总被引:6,自引:0,他引:6  
The mechanical properties of ceramic foams obtained through a novel process that uses the direct foaming and pyrolysis of preceramic polymer/polyurethane solutions were investigated. The elastic modulus, flexural strength, and compressive strengths were obtained for foams in the as-pyrolyzed condition; values up to 7.1 GPa, 13 MPa, and 11 MPa, respectively, were obtained. The strength of the foam was virtually unchanged at temperatures up to 1200°C in air; however, long-term exposure at 1200°C led to a moderate degradation in strength, which was attributed to the evolution of intrastrut porosity during the oxidation of residual free carbon, as well as devitrification of the foams struts.  相似文献   

6.
Ceramic Microtubes from Preceramic Polymers   总被引:2,自引:0,他引:2  
A novel process for the production of ceramic microtubes involving the microextrusion of preceramic polymers was studied. Microtubes with a wide range of inner and outer diameters and several centimeters long were produced from two silicone resins. A coextrusion approach was also used to extend the forming capability of the technique. The addition of carbon black resulted in electrically conductive silicon oxycarbide (SiOC) ceramic microtubes. SiOC microtubes possessed a high bending strength, ranging from ∼30–1100 MPa.  相似文献   

7.
This study presents a fabrication method and identifies processing bounds for additively manufacturing (AM) ceramic matrix composites (CMCs), comprising a silicon oxycarbide (SiOC) ceramic matrix. A digital light projection printer was used to photopolymerize a siloxane-based preceramic resin containing inert ceramic reinforcement. A subsequent pyrolysis converted the preceramic polymer to SiOC. Particle reinforcements of 0 to 40% by volume in the green state were uniformly dispersed in the printed samples to study their effects on pyrolysis mass loss and shrinkage, and CMC notch sensitivity and strength. Both particle and whisker reinforcements toughened the glassy SiOC matrix (1 MPa m1/2), reaching values >3 MPa m1/2. Bending strengths of >300 MPa (>150 MPa (g cm−3)−1) and a Weibull modulus of 10 were measured on AM samples without surface finish. We identified two pore formation mechanisms that placed processing bounds on sample size and reinforcement volume fraction. Methods for increasing these bounds are discussed. With properties commensurate to traditionally processed technical ceramics, the presented process allows for free-form fabrication of high-performance AM CMC components.  相似文献   

8.
Silicon oxycarbide ceramic foams were fabricated in a single step manufacturing process using in situ foaming of SiOC powders loaded silicone resin. The effects of heating rate on the porosity, compressive strength and microstructure of the ceramic foams were investigated. The porosity (total and open) increased firstly and then decreased with increasing heating rate. It was possible to control the total and open porosity of ceramic foams within a range of 81.9–88.2% and 62.4–72.5% respectively, by adjusting the heating rate from 0.25 °C/min to 3 °C/min while keeping the silicone resin content at 90 vol%. However, the compressive strength decreased with increasing the heating rate progressively, and the average compressive strength of the foams was in the range of 1.0–2.3 MPa. Micrographs indicated that the ceramic foams which cross-linked at a heating rate less than 1 °C/min had a well-defined open-cell and regular pore structure.  相似文献   

9.
Stop flow lithography (SFL) combines aspects of microfluidic and photolithography to continuously fabricate particles with uniform planar shapes as dictated by a mask. In this work we aim to expand the palette of materials suitable for SFL processing by investigating the use of UV-crosslinkable preceramic polymers to make ceramic particles. A commercially available methacrylated-polysiloxane was used as the preceramic polymer and was mixed with 2.5 wt% Irgacure 651 photoinitiator. A simple SFL system was assembled to continuously fabricate UV-crosslinked preceramic polymer particles in the shape of hexagons, triangles, and gears with diameters ranging from 100 to 200 μm and thicknesses of 74 μm +/- 4 μm. Particles were harvested from the excess preceramic solution, cleaned and then pyrolyzed at 1000 °C to transform them into silicon oxycarbide ceramic particles. Particle shape was maintained during pyrolysis despite a ~80 % linear shrinkage due to the removal of acryl and methyl side groups, as confirmed via FTIR. After pyrolysis the outer diameters of the SiOC particles ranged from 20 to 40 μm with thicknesses of 10 μm–12 μm. Pyrolyzed particles were successfully recovered and dispersed in water. This work demonstrates a robust path for the fabrication of ceramic particles with specific shapes from preceramic polymers via SFL.  相似文献   

10.
Novel Microcellular Ceramics from a Silicone Resin   总被引:5,自引:1,他引:5  
Microcellular silicon oxycarbide open cell ceramic foams were fabricated from a silicone resin. Microcellular foams, with a cell size ranging from ∼1–80 μm, were fabricated using poly(methyl methacrylate) microbeads as sacrificial templates. The compression strength of the foams decreased with increasing cell size.  相似文献   

11.
《Ceramics International》2020,46(5):5594-5601
Highly porous polymer-derived SiCN(O) and SiOC ceramics with low thermal conductivity were developed by replicating polyurethane (PU) foams. The PU templates were impregnated with polysilazane or polysiloxane precursor, followed by pyrolysis at different temperatures (1200 °C - 1500 °C) yielding SiCN(O) or SiOC ceramic foams, respectively. The swelling and cross-linking behavior of the used precursors had a significant impact on the morphology of the prepared foams. The samples had bulk densities ranging from 0.03 g.cm-3 to 0.56 g.cm-3 and a total porosity in the range from 75 to 98 vol%. Fourier transform infrared (FT-IR), Raman spectroscopy, X-ray diffraction (XRD) were employed to follow the structural evolution together with morphological characterization by scanning electron microscopy (SEM). The obtained ceramics were thermally stable up to 1400 °C, and the linear thermal expansion coefficient values of the porous SiCN(O) and SiOC components in the temperature range from 30 to 850 °C were found to be ~1.72 x 10-6.K-1 and ~1.93 x 10-6.K-1, respectively. Thermal conductivity (λ) as low as 0.03 W.m-1 K-1 was measured for the SiCN(O) and SiOC foams at room temperature (RT). The λ of the ceramic struts were also assessed by using the Gibson-Ashby model and estimated to be 2.1 W.m-1 K-1 for SiCN(O), and 1.8 W.m-1 K-1 for SiOC.  相似文献   

12.
Liquid preceramic poly(silylacetylene)siloxane resin was synthesized via a two-step protocol including organometallic condensation and hydrolysis reactions. The preceramic resin was well soluble in acetone, toluene, and tetrahydrofuran (THF), etc. By thermal cure at 180–250 °C a hard monolithic solid was formed through radical polymerization of secondary ethynyl groups. The poly(silylacetylene)siloxane resin was processed easily to various nonporous shapes to silicon carbide (SiC) and silicon oxycarbide (SiCO). SiCO ceramic was obtained at a yield of >75% by pressureless pyrolysis at 900–1200 °C; while SiC ceramic was obtained at 1500 °C at a yield of ≈67%. The molar ratio of Si/C in the SiC was found at 1:1.1–1:3, based on ICP-MS elemental analysis. X-ray diffraction (XRD) results revealed the typical β-SiC structure in the poly(silylacetylene)siloxane derived SiC ceramics. The SiC ceramics exhibited high thermo-oxidation resistance at elevated temperatures in air atmosphere.  相似文献   

13.
将铁氯化物混入聚硅氧烷前驱体进行交联成型和热解,利用热解中在聚硅氧烷中形成的孔隙和在孔隙中形成的铁颗粒为催化剂,在硅氧碳陶瓷基体中原位生长出硅氧碳纳米纤维,制备出硅氧碳陶瓷和硅氧碳纤维复合材料。用扫描电子显微镜观察材料断面,结果显示:在硅氧碳陶瓷基体中生长出纳米纤维,部分纤维取向分布,纤维紧贴于硅氧碳陶瓷基体,二者呈良好结合;能谱分析显示纤维中含硅、氧和碳,证实其为硅氧碳。所制得的硅氧碳陶瓷和硅氧碳纤维的复合结构不同于通常热解纯聚硅氧烷形成的单相的硅氧碳结构,在硅氧碳基体中的硅氧碳纤维是在聚硅氧烷前驱体中引入的铁催化剂在热解过程中通过催化聚硅氧烷一维生长形成的,该过程可用于发展一步法原位制备纳米纤维前驱体陶瓷复合材料。  相似文献   

14.
Chemical Durability of Silicon Oxycarbide Glasses   总被引:2,自引:0,他引:2  
Silicon oxycarbide (SiOC) glasses with controlled amounts of Si—C bonds and free carbon have been produced via the pyrolysis of suitable preceramic networks. Their chemical durability in alkaline and hydrofluoric solutions has been studied and related to the network structure and microstructure of the glasses. SiOC glasses, because of the character of the Si—C bonds, exhibit greater chemical durability in both environments, compared with silica glass. Microphase separation into silicon carbide (SiC), silica (SiO2), and carbon, which usually occurs in this system at pyrolysis temperatures of >1000°–1200°C, exerts great influence on the durability of these glasses. The chemical durability decreases as the amount of phase separation increases, because the silica/silicate species (without any carbon substituents) are interconnected and can be easily leached out, in comparison with the SiOC phase, which is resistant to attack by OH or F ions.  相似文献   

15.
Silicon oxycarbide (SiOC)-based ceramics were synthesized by pyrolysis of a commercial polysiloxane containing MoSi2 and ceramic filler particles. The influence of different gas atmospheres on the chemical composition and on the phase formation of the filled Si–O–C ceramic during the pyrolysis process up to elevated temperatures of above 1200°C has been studied. The pyrolysis gas composition in the furnace during pyrolysis was measured with an in situ gas analyzer. Both the core and the surface of bulk samples were investigated with respect to composition in order to take the changes on the rim area of the specimens into account. The influence of hydrogen gas on the compositional gradient of the resulting ceramic material was derived from samples investigated by polarization microscopy, X-ray diffraction (XRD), and micro-XRD (μ-XRD).  相似文献   

16.
Ceramic materials based on silicon oxycarbide (SiOC) and reduced graphene oxide (rGO) were produced by polymer pyrolysis and evaluated in terms of phase development and porosity. Carbonaceous phase, initially prepared from graphite oxide, was incorporated into silicone dihydroxy terminated in different amounts (0, 5, 15 and 25 wt%) and submitted to pyrolysis at 1500 °C to obtain SiOC/rGO ceramics. Higher ceramic yields and more thermally stable materials were obtained after rGO addition, whose results were associated to the chemical interaction degree between rGO and polymer structure. Cgraphite and SiC phases were generated in rGO-containing ceramics and a mixture of α- and β-SiC was achieved from 15 wt% rGO, enhancing their crystallinity with increasing of rGO content. Porosity features were influenced by the carbonaceous phase amount and different rGO-polymer interaction degrees. SiOC/rGO ceramics demonstrated desirable structural characteristics for future investigations in electrical and/or electrochemical applications.  相似文献   

17.
The influence of the aging conditions of the preceramic hybrid material on the microstructure of silicon oxycarbide (SiOC) glasses derived therefrom has been highlighted. The textural and structural properties of the glasses are modified by aging the hybrid precursor in different environments. Three solvents have been employed as aging media to produce macroporous SiOC ceramics with porosities in the range between 30 and 70 vol.%.It has been concluded that the polarity and chemical characteristics of the solvent plays an important role on the surface characteristics and structure of the obtained SiOC glass. Raman spectroscopy and Small Angle X-ray scattering reveal the presence of different nanodomain sizes depending on the polymeric fraction in the preceramic network. The free carbon phase developed during the hybrid-to-ceramic conversion turn out to have a high influence on the growth of the silica nanodomains and thus on the nanostructure of the obtained ceramic.  相似文献   

18.
A commercially available solid silicone resin was dissolved in a solvent and emulsified via stirring in the presence of water and surfactant to form three different types of emulsions, namely water-in-oil (w/o), water-in-oil-in-water (w/o/w) and oil-in-water (o/w), by following different preparation procedures. After curing, thermosets possessing different morphologies, ranging from highly porous (monolithic) foams to porous micro-beads and solid micro-beads, formed. The samples kept their shape upon pyrolysis, and resulted in ceramic foams (via w/o) and porous micron sized (∼200 μm) spherical particles (via w/o/w) having more than 80 vol% of total porosity, while with o/w emulsification solid SiOC ceramic particles with an average diameter of ∼100 μm formed. Both surfactant and water altered the IR spectra for emulsion-derived thermoset samples, in comparison to the pure cured resin, but upon pyrolysis similar amorphous ceramics were obtained from all samples.  相似文献   

19.
SiC nanowires-filled cellular SiCO ceramics were prepared using polyurethane sponge as a porous template infiltrated with silicone resin by pyrolysis at 1400 °C under Ar atmosphere. The pyrolysis temperature was an important parameter affecting the formation of SiC nanowires. The as-prepared sample obtained at 1000 °C was composed of SiCO glasses and turbostratic carbon. The SiCO ceramic was further converted into SiO2 crystals and amorphous carbon by pyrolysis at 1200 °C. With the increasing pyrolysis temperature, SiC nanocrystals embedded in the non-crystalline SiCO matrix were observed. Furthermore, the SiC nanowires were formed in the pores of the SiCO ceramic. The diameters of the SiC nanowires are in the range 80–150 nm and the lengths are up to several tens of micrometers. The growth mechanism of the nanowires was supported by the vapor-solid mechanism.  相似文献   

20.
Multiple metals doped polymer-derived SiOC ceramics with octet truss structure were prepared by employing a photosensitive methyl-silsesquioxane as preceramic polymer through sol-gel method and Digital Light Processing 3D printing. The physical and chemical properties of the preceramic polymers and printed octet truss structure SiOC ceramics were investigated. Results show that the organosilicon preceramic polymers have outstanding photocuring properties and could transform into amorphous SiOC ceramics at 800–1200?°C. It is illustrated that the excellent mechanical properties of SiOC ceramics with octet truss structure (after 3D printing and pyrolysis) are attributed to the metal elements pinning in the amorphous matrix on the atomic level. Doping other metal elements such as Fe, Ni, Co, Pt, etc, is thought to bring promising properties for the lattice structure SiOC ceramics and potentially further expand its applications in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号