首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
采用CETR多功能磨损试验机,考察PTFE基耐磨涂层在往复滑动条件下的摩擦磨损性能;利用了扫描电子显微镜、三维形貌轮廓仪和电子能谱对磨痕表面进行微观分析,探讨PTFE涂层的摩擦磨损机制。结果表明:PTFE涂层的摩擦学性能与涂层的特性密切相关,较低的摩擦因数对应着较好的耐磨性;涂层的往复滑动磨损表现为磨粒磨损和氧化磨损共同作用的机制。  相似文献   

2.
为探究沉积温度对CrN涂层摩擦学性能的影响,同时寻找适合CrN涂层润滑的绿色润滑剂,采用磁控溅射技术在不同温度下制备CrN涂层。利用X射线衍射仪、扫描电子显微镜、AFM原子力显微镜、划痕仪、纳米压痕仪和摩擦磨损试验机评价涂层的微观结构、力学性能,以及在干摩擦及大豆油润滑条件下的摩擦磨损性能。结果表明:在250 ℃下沉积的CrN涂层具有最致密的晶状结构,且力学性能最优。摩擦试验结果显示,在干摩擦和大豆油润滑下250 ℃下沉积的CrN涂层表现出最优的摩擦学特性。XPS分析表明,由于摩擦的存在,大豆油会在涂层表面发生摩擦化学反应并生成一层化学吸附膜,从而能有效减轻涂层的摩擦和磨损。250 ℃下沉积的CrN涂层具有最优的力学及摩擦学性能,且大豆油极为适合CrN涂层的润滑。  相似文献   

3.
针对铝合金硬度低、耐磨性差的问题,采用电弧喷涂分别在6061铝合金基体表面喷涂Al和Al-Ni-Mm-Co涂层,采用显微硬度计、扫描电子显微镜、X射线衍射仪分别对涂层硬度、涂层显微结构、涂层成分进行分析。采用球-盘式往复摩擦试验机考察涂层在脂润滑下的摩擦学性能,并对磨痕形貌和表面主要元素进行观察。结果表明,Al-Ni-Mm-Co涂层的减摩性和抗磨性能均优于6061铝合金和Al涂层,其优异的摩擦学性能归结为摩擦表面形成的Al2O3、NiO、CoO等氧化保护层,主要的磨损形式为疲劳磨损。  相似文献   

4.
为了探讨PTFE基固体润滑涂层的摩擦学和力学性能,采用HSR-2M型高速往复式摩擦磨损试验机、INSTRON5944拉压试验机和DDL-300电子万能试验机分别对PTTE基固体润滑涂层的摩擦学性能、粘结性能和抗压性能进行研究.结果表明:A配方涂层的粘结性能较优,其粘结强度是B配方和C配方涂层的4倍左右;B涂层的力学性能最差;C涂层的摩擦学性能和抗压性能最优,其抗压强度是A和B涂层的2倍左右,并且其韧性也较好.  相似文献   

5.
为研究润滑油缺失工况下不同活塞环涂层在不同温度下与缸套的摩擦学性能,选取5种商用活塞环涂层,利用扫描电子显微镜观察不同涂层的截面形貌,利用往复式摩擦磨损试验机,在润滑油缺失工况下,分别在常温、200 ℃和350 ℃条件下进行摩擦磨损试验,利用轮廓仪和光学显微镜分别观察摩擦试验后的磨损量和磨痕形貌。结果表明:CrN基涂层和CKS涂层主要为黏着磨损,对缸套磨损大,不同温度下摩擦学性能稳定;含DLC涂层主要为磨料磨损,常温摩擦因数小,高温下不同涂层有较大差异,其中CDC+DLC涂层综合性能最佳。  相似文献   

6.
表面处理复合涂层的摩擦学评价方法   总被引:5,自引:0,他引:5  
从涂层的摩擦学评价的重要参数、涂层与基体间的粘合力、涂层力学性能、涂层的摩擦学特性以及涂层零件的摩擦学特性等方面介绍了金属切削刀具和模具等工件的复合涂层的摩擦学涂层的评价方法,指出了在轻合金涂层材料、低摩擦因数的涂层、涂层韧性的改进、涂层磨损试验方法、涂层设计和评价的工具等方面需要进一步研究。  相似文献   

7.
为改善高熵合金涂层的摩擦学性能,通过石墨与AlTiVCrNb高熵合金靶共溅射制备(AlTiVCrNb)C涂层,采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)分析涂层的成分、表截面形貌和物相,采用纳米压痕仪、球盘式摩擦磨损试验机测试涂层的硬度、弹性模量和摩擦学性能,采用白光干涉三维形貌仪表征涂层的磨损情况。试验结果表明:随着涂层中碳含量增加,高熵组分从BCC/FCC双相向单一FCC结构转变,且涂层的微观组织结构也随之变化;由于碳化物的形成和固溶强化,涂层呈现良好的摩擦学性能;在涂层碳原子分数为20.83%时,涂层的摩擦性能和力学性能达到最优,此时摩擦因数最低,为0.35,涂层硬度与弹性模量最高,分别为17.84、182.72 GPa。研究表明,在磁控溅射工艺中石墨与AlTiVCrNb高熵合金共溅射,可以获得摩擦学性能良好的高熵碳化物(AlTiVCrNb)C涂层。  相似文献   

8.
长寿命黏结固体润滑涂层的制备及其摩擦学性能研究   总被引:1,自引:0,他引:1  
采用红外光谱和XRD对进口银锑黏结固体润滑涂层的成分进行分析。结果表明,银锑涂层主要由酚醛树脂、石墨、三氧化二锑和银组成。根据银锑涂层的成份,研制THC-800和F44两种黏结固体润滑涂层,分别采用CSM摩擦试验机和MHK-500A环块磨损试验机评价两种涂层在干摩擦和RP-3航空煤油润滑下的摩擦学性能。结果表明,在载荷15 N、振幅1.25 mm、频率10Hz及干摩擦的实验条件下,THC-800涂层的耐磨寿命大于540min,而F44涂层的耐磨寿命仅220 min,摩擦因数分别为0.075和0.080;在载荷1120 N、滑动速度2.56 m/s及RP-3航空煤油润滑下,THC-800涂层和F44涂层的耐磨性分别为16.3 km/μm和11.8 km/μm,摩擦因数分别为0.076和0.080;无论在干摩擦还是油润滑下,THC-800涂层比F44涂层均具有较好的摩擦学性能。  相似文献   

9.
元素掺杂是提升DLC薄膜摩擦学性能和耐温性能的重要途径。采用直流磁控溅射技术在304不锈钢基体表面沉积了含氢DLC薄膜,同时利用射频磁控溅射技术完成Cr元素的掺杂,研究Cr元素掺杂对DLC薄膜的力学性能及摩擦学性能的影响。采用纳米压痕仪测试薄膜硬度并利用划痕试验测试膜基结合力,采用拉曼光谱分析薄膜sp2和sp3键含量的变化和转移膜的生成。采用UMT多功能摩擦磨损试验机评价薄膜在常温和高温环境下的摩擦磨损性能,并利用扫描电镜观察磨损表面,分析其磨损机制。结果表明,Cr元素掺杂会显著提高薄膜的膜基结合力,但会使薄膜硬度有一定的下降。常温摩擦学性能测试显示,DLC薄膜的摩擦因数随着Cr含量的增加呈现出先下降后上升的趋势,在Cr质量分数为3.34%时达到最低;但薄膜的磨损率随Cr含量的增加略有升高。高温摩擦学性能测试表明,Cr元素掺杂显著改善了DLC薄膜的高温摩擦学性能,未掺杂的DLC在150℃以上摩擦时会失效,Cr元素掺杂使薄膜在250℃下也能保持较低的摩擦因数和较长的抗磨寿命。Cr元素的加入能够提高DLC薄膜的膜基结合力,降低摩擦因数,并提高薄膜...  相似文献   

10.
采用黏接固体润滑涂层法,以聚四氟乙烯为润滑剂,利用喷涂方式在试样上制备2种PTFE基固体耐磨涂层,并采用HSR-2M型高速往复式摩擦磨损试验机对其摩擦学性能进行研究。研究结果表明,水性全氟涂层的摩擦因数不稳定且明显高于油性全氟;随着固化条件的改变,涂层的摩擦因数和磨损量也出现不同程度的变化;当采用油性全氟为润滑剂,固化温度为260℃,固化时间为30 min时,PTFE基耐磨涂层的摩擦因数和磨损量均最小,此时涂层的摩擦学性能最优。  相似文献   

11.
The use of PVD coatings in tribological applications becomes more and more widespread. Thus also the need to fully understand the relationships between the intrinsic properties of the coating, the properties of the coating/substrate composite and the tribological performance of the composite in different tribological systems becomes increasingly pressing. One of the tools available for tribological characterization of coatings and coating/substrate composites is scratch testing. In the current paper, Uppsala University presents a selection of results from many years of scratch testing of PVD coated components. Applications range from adhesion assessment and coating quality determination to estimation of coating fracture resistance. Examples in the form of scratch studies of PVD coatings on various high speed steels and tool steels - including failure mode anaiysis in situ SEM - are given.  相似文献   

12.
V. Leskovšek  B. Podgornik  M. Jenko 《Wear》2009,266(3-4):453-460
The tribological loading of forging tools is caused by the relative motion between the plastically deformed work piece and the die. In comparison to many other forming processes, hot forging has an especially disadvantageous tribological system, combining thermal, mechanical and chemical loadings. The advantages of hard coatings, which are well known for cutting tools, are to a much lesser extent explored for casting, extrusion, moulding and forging tools. Increasing the lifetime of these tools is an important task in surface engineering because of the complex loading conditions and the often complicated tool geometry, with the plasma-assisted chemical vapour deposition (PACVD) technique being well suited to the depositing of hard coatings onto large dies and moulds.The aim of this paper is to present and discuss possible improvements to industrial applications (i.e., the hot forging of automotive parts) obtained by the duplex PACVD coating of forging dies. The experimental results indicate that the deposition of a proper duplex PACVD coating and the use of a proper substrate treatment lead to improved tribological properties and a longer lifetime for the hot-forging die.  相似文献   

13.
Zsidai  L.  Samyn  P.  Vercammen  K.  Van Acker  K.  Kozma  M.  Kalácska  G.  De Baets  P. 《Tribology Letters》2004,17(2):269-288
Polymers are increasingly used in tribological applications, because of their self-lubricating ability, corrosion resistance and chemical compatibility. However, their performance depends strongly on the parameters of the total tribological system. Not only polymer characteristics, but also counterface properties become important because of their influence on friction and wear, on surface energy and on the thermal conductivity of the total system. Applying a Diamond-Like Nanocomposite (DLN) coating on a steel counterface can improve the tribological behaviour of the sliding couple under certain conditions. In the case of metal sliding against DLN, the high hardness and the wear resistance of the coating is advantageous for better tribological properties. However, for polymers sliding against DLN, the lower thermal conductivity of the DLN coating compared with a steel mating surface dominates friction and wear. In case of polyamides this results in worse tribological performance in contact with the DLN coating, because of polymer melting. In the case of more rigid polymers, such as, e.g., POM-H and PETP, lower coefficients of friction lead to lower frictional heat generation. In these cases, the thermal characteristics of the counterface are less important and the lower surface energy of the DLN coating is favourable for decreased adhesion between the polymer and the coating and consequently better tribological properties.  相似文献   

14.
In this study, the effects of a combination of ultrasonic nanocrystalline surface modification (UNSM) technique and AlCrN coating on the tribological properties of high speed steel (HSS) were investigated. The AlCrN coating with a thickness of about 3 µm was deposited by the physical vapor deposition (PVD) technique onto the polished and UNSM-treated HSS specimens. The tribological and scratch tests results revealed that the AlCrN coating deposited onto the UNSM-treated specimen showed better tribological properties compared to that of the AlCrN coating deposited onto the polished specimen, which may be attributed to the modified surface beneath the AlCrN coating. Hence, it is expected that the results of this study can be applied to reduce the wear of fine blanking punches.  相似文献   

15.
MoS2–Cr coatings with different Cr contents have been deposited on high speed steel substrates by closed field unbalanced magnetron (CFUBM) sputtering. The tribological properties of the coatings have been tested against different counterbodies under dry conditions using an oscillating friction and wear tester. The coating microstructures, mechanical properties and wear resistance vary according to the Cr metal-content. MoS2 tribological properties are improved with a Cr metal dopant in the MoS2 matrix. The optimum Cr content varies with different counterbodies. Showing especially good tribological properties were MoS2–Cr8% coating sliding against either AISI 1045 steel or AA 6061 aluminum alloy, and MoS2–Cr5% coating sliding against bronze. Enhanced tribological behavior included low wear depth on coating, low wear width on counterbody, low friction coefficients and long durability.  相似文献   

16.
This paper presents a new modeling approach, based on Oxley's predictive model, for predicting the tool-chip contact in 2-D machining of plain carbon steels with advanced, multi-layer coated cutting tools. Oxley's original predictive model is capable of predicting machining parameters for a wide variety of plain carbon steels, however, the tool material properties and their effects are neglected in the analysis. In the present work, the effect of the tool material, more particularly, the effect of multiple coating layers and the individual coating thicknesses on the tool-chip contact length in orthogonal machining is incorporated. The results from the model predict the tool-chip contact length with respect to major cutting parameters such as feed and rake angle, work material parameters such as the carbon content in the steel, and varying thicknesses and combinations of coating layers. This model enables more precise cutting tool selection by predicting the relative tribological impact (in terms of tool-chip contact length) for a variety of multi-layer coated tools.  相似文献   

17.
We have used a scanning probe microscope equipped with a custom made diamond tip to study tribological properties of an inorganic–organic hybrid Si, O, H, and C coating produced by plasma enhanced chemical vapor deposition (PECVD) on siloxane/acrylic/polycarbonate multilayer substrates and on glass substrates. The micro indentation hardness and micro mar resistance were measured under different normal forces, and the critical loads for cracking, delamination, and chipping were evaluated. The effects of substrate, coating thickness, and interfacial adhesion on tribological properties of the coating/substrate systems are discussed. The results show that increasing coating thickness and strengthening interfacial adhesion can effectively inhibit cracking, delamination, and chipping of the coating/substrate systems under wear. Improving the physical properties of the PECVD coating and substrate, such as enhancing elastic recovery, reducing plasticity and brittleness, and matching the properties of coating and substrate better can improve the wear resistance of the systems further.  相似文献   

18.
Surface engineering with applied coating plays a vital role in any industrial application. These coatings are meant for better mechanical and tribological characteristics when applied on to the materials. The major challenge in selecting a suitable coating strategy is their input process parameters. There are several parameters which influences the coating properties, but it is hard to choose one of them and ignoring others. Multilayers of tungsten nitride are attracting great interest to modulate their tribological and mechanical properties through physical vapour deposition process due to their wide application range. These multilayer nitride films were deposited through unbalanced reactive magnetron sputtering technique. The tribological tests were performed on a pin-on-disc tribometer at room temperature and it has been observed that friction and wear values reduce drastically while applying multilayer coatings. Later, artificial neural network (ANN) is employed to optimize the tribological properties of sputtered coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号