共查询到19条相似文献,搜索用时 109 毫秒
1.
2.
遗传算法是一种基于自然选择和遗传机制的搜索算法。本文将其用于解决一个著名的NP完备问题——0- 1背包问题,并对经典遗传算法进行了改进。通过对贪婪算法进行了改进以产生初始种群,并在进行交叉和变异操作过程中引入了对无效个体的校正操作,从而较好地保持了种群的多样性和优良度。数值实验表明该算法具有较好的全局最优性。 相似文献
3.
介绍了基于贪心思想的改进遗传算法,并用该算法解决0-1背包问题,试验数据证明该算法能有效求解0-1背包问题,而且比原遗传算法效率高. 相似文献
4.
提出了两种用于求解0-1背包问题的改进排挤遗传算法PFCGA和GCGA,PFCGA使用惩罚函数和排挤操作使算法能够比较稳定地求得最优解,GCGA把排挤遗传和贪婪算法相结合,对种群中非法染色体表示的不可行解进行修复使其变为可行解,对非优可行解进行修正使其尽量靠近最优解,GCGA在保证求解精度的前提下加快求解速度。通过仿真实验和比较分析结果表明,PFCGA和GCGA能够获得很高的求解精度和正确率,是求解0-1背包问题的有效算法。 相似文献
5.
《计算机光盘软件与应用》2013,(8):68-69
将贪婪算法和退火算法融入遗传算法,结合各自算法的优点形成了一种混合遗传算法。通过实验表明,运用此算法求解0-1背包问题,搜索能力明显优于基本遗传算法和贪婪算法。 相似文献
6.
7.
求解0/1背包问题的离散差分进化算法 总被引:2,自引:0,他引:2
0/1背包问题是实际中经常遇到的一类经典NP难组合优化问题.针对0/1背包问题,提出一种融合贪婪变换的离散差分进化算法.该算法中通过模2运算来实现变异操作;为了满足约束上限,融合了贪婪变换;为了防止早熟,采用了在进化若干代后重新初始化种群的策略.经数值实验表明,该算法在求解0/1背包问题时是可行的,有效的,比单纯的贪婪算法,融合贪婪变换的粒子群优化算法及融合贪婪变换的遗传算法更加稳健,良好. 相似文献
8.
提出对基本遗传算法(Genetic Algorithm,GA)的改进策略,并将其应用于多约束0-1背包问题(Multi-constrained 0-1Knapsack Problems,MKP)的求解。改进策略主要有:将线性规划松弛法求得的MKP的解作为初始解,另外为了避免种群多样化的丧失,将复杂的修复操作和局部优化操作应用于每一个最近产生的解。最后,对大规模测试数据的标准集进行实验,并将该算法与先前的方法进行比较,结果表明新的遗传算法在大多数时间能够更快速地收敛到较优解。 相似文献
9.
求解多维0—1背包问题的混合遗传算法 总被引:8,自引:3,他引:8
文章研究一类典型的组合优化问题——多维0-1背包问题,提出了在简单遗传算法(SGA)中加入局部搜索机制的混合遗传算法(HGA)来求解该类问题,并在大量数值实验的基础上,将HGA与传统的求解方法及SGA进行了比较,实验的结果表明,该算法具有一定的优越性。 相似文献
10.
求解0-1背包问题(KP)的最优解的时候,传统遗传算法(GA)的局部求精能力不足而简单局部搜索算法的全局探索能力有限,针对上述问题,将这两个算法整合并提出了混合贪婪遗传算法(HGGA)。在GA全局搜索框架下增加局部搜索模块,并改进传统仅基于物品价值密度的修复算子,增加基于物品价值的贪婪混合选项,从而加速寻优过程。HGGA一方面引导种群在进化的优质解空间中展开精细搜索,另一方面依靠GA的经典操作算子开拓全局搜索空间,从而达到算法求精能力和开拓能力的良好平衡。HGGA分别在三组数据上做了测试,结果表明在第一组15个测试用例中的12个上,HGGA能够百分百找到最优解,成功率达到80%;在第二组小规模数据集上,HGGA的性能明显好于其他同类GA和其他元启发算法;在第三组大规模数据集上,HGGA较其他元启发式算法具有更好的稳定性和高效性。 相似文献
11.
The increasing complexity of real-world optimization problems raises new challenges to evolutionary computation. Responding to these challenges, distributed evolutionary computation has received considerable attention over the past decade. This article provides a comprehensive survey of the state-of-the-art distributed evolutionary algorithms and models, which have been classified into two groups according to their task division mechanism. Population-distributed models are presented with master-slave, island, cellular, hierarchical, and pool architectures, which parallelize an evolution task at population, individual, or operation levels. Dimension-distributed models include coevolution and multi-agent models, which focus on dimension reduction. Insights into the models, such as synchronization, homogeneity, communication, topology, speedup, advantages and disadvantages are also presented and discussed. The study of these models helps guide future development of different and/or improved algorithms. Also highlighted are recent hotspots in this area, including the cloud and MapReduce-based implementations, GPU and CUDA-based implementations, distributed evolutionary multiobjective optimization, and real-world applications. Further, a number of future research directions have been discussed, with a conclusion that the development of distributed evolutionary computation will continue to flourish. 相似文献
12.
W. B. Langdon 《Genetic Programming and Evolvable Machines》2009,10(1):5-36
The distribution of fitness values (landscapes) of programs tends to a limit as the programs get bigger. We use Markov chain
convergence theorems to give general upper bounds on the length of programs needed for convergence. How big programs need
to be to approach the limit depends on the type of the computer they run on. We give bounds (exponential in N, N log N and smaller) for five computer models: any, average or amorphous or random, cyclic, bit flip and four functions (AND, NAND,
OR and NOR). Programs can be treated as lookup tables which map between their inputs and their outputs. Using this we prove
similar convergence results for the distribution of functions implemented by linear computer programs. We show most functions
are constants and the remainder are mostly parsimonious. The effect of ad-hoc rules on genetic programming (GP) are described
and new heuristics are proposed. We give bounds on how long programs need to be before the distribution of their functionality
is close to its limiting distribution, both in general and for average computers. The computational importance of destroying
information is discussed with respect to reversible and quantum computers. Mutation randomizes a genetic algorithm population
in generations. Results for average computers and a model like genetic programming are confirmed experimentally. 相似文献
13.
14.
15.
The traditional zero-one principle for sorting networks states that “if a network with n input lines sorts alln2 binary sequences into nondecreasing order, then it will sort any arbitrary sequence of n numbers into nondecreasing order”. We generalize this to the situation when a network sorts almost all binary sequences and relate it to the behavior of the sorting network on arbitrary inputs. We also present an application to mesh sorting. 相似文献
16.
近年来针对各种问题提出了许多量子算法,这些量子算法都利用了量子态的可迭加性(Superposition)和纠缠性(Entan-glement),本文在量子环境下对0/1背包问题进行求解,介绍了量子算法的基本思想及相关概念。然后分析并给出求解0/1背包问题的量子算法,在量子物理环境下它能在多项式时间内求出所需要的解。这个量子算法可以推广解决其它NPC问题,如旅行售货员问题等。 相似文献
17.
均匀设计在遗传算法中的研究和应用 总被引:1,自引:0,他引:1
随着优化问题的复杂化、多目标化,先前的遗传算法在其问题的寻优搜索处理上往往达不到工程实际需要的满意效果。针对这种难以优化的多目标问题,该文先从遗传算法的理论着手,在均匀设计的基础上,提出了一种采用多目标遗传算法求解Pareto最优解集的方法,即均匀矩阵法,它是将均匀设计运用到遗传算法中来,以前随机选取的权值矢量就可以均匀地选取;最后用实例进行仿真,得到了满意的效果。结果表明该方法简单、易于实现,能够很好地解决多目标问题的优化。 相似文献
18.
二次型0-1分配问题的遗传算法求解 总被引:2,自引:0,他引:2
文章针对数学中一类计算非常困难的二次型0-1分配问题,提出遗传算法的求解思想,并根据问题的具体特点对算法进行改进,将复杂的约束条件包含在适应值函数中,构造非线性变化的动态适应值来求解该类问题。最后成功地运用于一个分散决策问题实例,与常规遗传算法相比该搜索算法具有明显的优越性。 相似文献
19.
Dong-Xia Chang Author Vitae Xian-Da Zhang Author Vitae Author Vitae 《Pattern recognition》2009,42(7):1210-1987
In this paper, a new clustering algorithm based on genetic algorithm (GA) with gene rearrangement (GAGR) is proposed, which in application may effectively remove the degeneracy for the purpose of a more efficient search. A new crossover operator that exploits a measure of similarity between chromosomes in a population is also presented. Adaptive probabilities of crossover and mutation are employed to prevent the convergence of the GAGR to a local optimum. Using the real-world data sets, we compare the performance of our GAGR clustering algorithm with K-means algorithm and other GA methods. An application of the GAGR clustering algorithm in unsupervised classification of multispectral remote sensing images is also provided. Experiment results demonstrate that the GAGR clustering algorithm has high performance, effectiveness and flexibility. 相似文献