共查询到16条相似文献,搜索用时 46 毫秒
1.
为了提高大坝安全预警模型的精度和泛化能力,基于支持向量机(SVM)和相关向量机(RVM)理论,利用自适应粒子群算法(APPSO)分别对SVM和RVM模型中的参数进行寻优,建立了基于APPSO-SVM与APPSO-RVM的大坝安全预警模型,并通过实例应用做了比较。结果表明,尽管APPSO-RVM模型的相关向量个数少于APPSO-SVM模型,但APPSO-RVM模型的拟合精度和泛化能力均高于APPSO-SVM模型,因此在实际建模时应优先选择该模型。 相似文献
2.
分析与处理大坝变形监测资料在大坝安全监测中意义重大。支持向量机(SVM)在大坝安全监测建模中应用广泛,但采用标准粒子群(PSO)算法对SVM参数寻优过程中,易陷入局部最优,且残差也会影响模型的预测精度。为提高大坝监测模型的泛化能力和预测精度,采用改进后的自适应位置PSO(APPSO)算法,对SVM模型的参数进行寻优,并利用马尔科夫链(MC)模型修正PSO-SVM模型的残差。工程实例分析表明,PSO-SVM-MC模型可提高模型预测的泛化能力和精度。 相似文献
3.
建立合理的大坝变形预警模型对于大坝安全稳定运行意义重大。为提高预测精度,建立以相关向量机(RVM)为理论基础的时间序列非线性预警模型,采用一种精度较高的时间序列短期预测(自回归移动平均ARMA)模型修正RVM预测模型的误差序列,同时采用一种改进的粒子群算法(PSO)寻优核函数。实例验证结果表明,修正后的模型预测结果精度明显提高,可为类似工程提供参考。 相似文献
4.
5.
6.
鉴于大坝安全监测评价中相关向量机(RVM)模型性能的优劣取决于核函数选择的问题,采用混合核函数(即结合局部核函数和全局核函数)进一步提升RVM模型在大坝安全建模过程中的拟合预报精度,并采用改进粒子群算法对其寻优。经实际工程验证,基于混合核RVM理论的优化模型可在一定程度上提升模型的性能。 相似文献
7.
8.
针对水资源承载力评价预测涉及多因素综合指标的问题,采取粒子群算法对支持向量机模型中影响较大的训练参数惩罚因子C和核参数σ进行优化,建立了基于PSO-SVM的水资源承载力预测模型,根据指标等级标准构造训练集数据,对黑龙江省2017年水资源承载力进行评价。结果表明,黑龙江省2017年水资源承载力指数位于0.423 4~0.709 2之间,部分地区水资源承载力处于Ⅱ级,承载能力较弱,仍有较大提升空间。 相似文献
9.
支持向量机(SVM)能有效解决高维数非线性问题,且具有很好的泛化能力,其关键在于惩罚因子及核参数的选取;遗传算法具有良好的全局搜索能力与潜在的并行性,但局部搜索能力差,且易陷入早熟收敛。为提高大坝变形预警模型精度和泛化能力,提出利用改进的双切点交叉遗传算法(Db1GEGA)对SVM模型进行参数寻优,构建了基于改进Db1GEGA-SVM的大坝变形预警模型,并通过实例应用做了比较。结果表明,基于改进Db1GEGA-SVM的大坝变形预警模型具有更强的泛化能力和更高的预测精度。 相似文献
10.
11.
为解决利用混凝土坝安全监测全序列数据建立的支持向量机(SVM)模型存在结构复杂、计算工作量大等问题,提出利用熵理论选择具有代表性样本代替全序列样本进行建模,即通过建立外部档案,根据外部档案更新算法选择具有代表性的样本,然后将外部档案的样本用作支持向量机的训练样本。将该方法用于某蓄水初期的混凝土坝变形模型的构建中,结果表明,该组合算法在保证模型精度的同时有效降低了模型的复杂程度,减少了模型的训练时间,且使模型的泛化能力得到一定的提升。 相似文献
12.
针对现有大坝预警指标拟定方法的局限,提出了一种基于熵—云耦合的混凝土坝变形预警模型。基于信息熵理论,运用熵权法给出了混凝土坝各测点变形权重,定义了单测点有序度并构建了多测点变形熵;考虑到云模型理论可反映概念的模糊性和随机性,计算了多测点变形熵的数字特征值,绘制了混凝土坝变形熵的云图,并拟定了混凝土坝变形测点的预警指标。实例计算表明,基于熵—云耦合的混凝土坝预警模型高效可行,具有重要的工程应用价值。 相似文献
13.
鉴于支持向量机(SVM)存在结构稀疏化不足、缺乏概率信息等缺陷,将性能更具优势的相关向量机(RVM)理论引入到大坝变形预测的应用中。选择高斯径向基函数作为RVM模型的核函数,核参数用基于模拟退火的混合粒子群算法(SAPSO)进行寻优,进而建立SAPSO-RVM回归预测模型。实例应用结果表明,RVM模型的向量数量远小于SVM模型,在保持良好泛化能力的前提下计算结构得到简化,混合粒子群算法相较于一般粒子群算法其全局寻优能力也有所提高,SAPSO-RVM模型回归预测精度较高。 相似文献
14.
15.
针对目前景观湖泊富营养化严重的问题,提出了一种基于粒子群算法(PSO)优化支持向量机(SVM)的叶绿素a含量的预测方法。利用2017年5~10月广西大学碧云湖的水质监测数据和气象数据进行主成分分析,确定影响水体叶绿素a含量的主要因素为TN、TP、浊度、温度、光照时长和pH值,并将其作为PSO-SVM模型的输入量,以预测景观湖泊水体叶绿素a的含量;将该模型应用于镜湖、鉴湖和月牙湖水体叶绿素a含量的预测以验证模型的适用性。结果表明,基于PSO-SVM模型的碧云湖的叶绿素a含量预测的平均平方误差仅为1.25%,平均相对误差为2.46%;该模型对镜湖、鉴湖和月牙湖水体叶绿素a含量拟合值的平均平方误差分别为3.17%、4.05%、2.42%,平均相对误差分别为3.48%、4.31%、2.80%。PSO-SVM模型可以很好地运用于景观湖泊水体叶绿素a含量的预测,可为湖泊富营养化防治提供参考。 相似文献
16.
最小二乘支持向量机在大坝变形预测中的应用 总被引:11,自引:5,他引:11
介绍了基于统计学习理论的一种新的机器学习技术———支持向量机(SVM)和其拓展方法———最小二乘支持向量机(LSSVM),并将LSSVM算法应用于混凝土大坝安全监控中的变形预测。根据实测数据,建立了基于LSSVM算法的大坝变形预测模型,同时与经典SVM预测模型进行分析比较。结果表明,LSSVM和经典SVM算法在大坝变形预测中都具有较好的可行性、有效性及较高的预测精度;LSSVM在算法的学习训练效率上比SVM有较大的优势,更适合于解决大规模的数据建模。 相似文献