首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
提出了考虑周期性边界条件时水泥水化计算机模拟方法.根据水泥颗粒与模拟单元的相对位置,确定附加水泥颗粒的数量和位置以实现周期性边界条件.描述了单一水泥颗粒水化模拟的基本原理,引入三个参数量化水化过程中水泥颗粒之间的干扰效应.作为一个工程应用,基于模拟的水泥石微观结构,提出了水化度计算方法.通过与文献中的试验结果比较,验证了方法的有效性.最后,定量分析了水灰比和温度对水化度的影响,发现水化度随着水灰比和温度的增大而增大.  相似文献   

2.
基于计算机模拟的水化程度预测方法   总被引:1,自引:0,他引:1  
总结了水泥水化计算机模拟的基本原理,强调了水泥颗粒之间的干扰效应,基于计算机模拟所得的水泥石微观结构,提出了水泥水化程度预测方法.通过与文献中的2组实验数据比较,验证了该方法的有效性,并利用该方法讨论了水灰比和最大颗粒直径对水泥水化程度的影响,结果发现:水化7 d后,水灰比为0.6的水泥其水化程度比水灰比为0.4的水泥大14%,最大颗粒直径为10μm的水泥其水化程度比最大颗粒直径为20μm的水泥大12%.  相似文献   

3.
基于多相水化模型的水泥水化动力学研究   总被引:1,自引:0,他引:1  
基于Ulm和Coussy提出的多相水化动力学模型,在考虑水泥的化学组成、养护温度、水灰比、最终水化程度及水泥细度等因素情况下,从理论上建立了水化动力学方程,可用于预测水化速率随水化程度的变化。结果表明:水灰比会加速相边界反应,而对早期的结晶成核与晶体生长却没有明显影响;温度的升高能够加速水化进程,却不能改变最终水化程度。  相似文献   

4.
计算机模拟水泥水化反应,有助于剖析水泥石的微观结构,说明水泥水化过程内在机理。建立元胞自动机模型,模拟水灰比分别为0.3、0.4、0.5时水泥孔隙率的变化过程。基于P·O 42.5级水泥水化热试验,拟合出水化度曲线α(t)用于水泥浆的模拟,得出模拟结果:孔隙率随水化时间增加而减小、相同时间下水灰比越大则孔隙率越大,并用P·O 42.5级水泥石试块72、168 h的抗压强度试验值来验证模拟结果。  相似文献   

5.
粉煤灰-脱硫石膏水泥基材料水化活性及微结构   总被引:1,自引:0,他引:1  
采用DTA-TG、XRD、SEM以及宏观水化收缩和强度试验等手段研究了粉煤灰-脱硫石膏-水泥三元复合胶凝体系的水化过程、活性效应及微观结构等,根据试验结果总结了复合胶凝材料的水化动力学过程.结果表明,粉煤灰-脱硫石膏水泥石的钙矾石吸热峰强于基准样;在各组分相互活性激发和外掺激发剂作用下,粉煤灰-脱硫石膏水泥石中2次水化...  相似文献   

6.
从微观角度建立了水泥水化过程的三维模型,并根据最小理论水灰比推导出了水化程度α与水化半径R之间的函数表达式。通过对不同水灰比(0.20,0.25,0.30,0.35和0.40)的算例做了水化程度α与水化半径R的数值计算,并与试验数据进行比较。结果表明,该模型能够从微观角度模拟水泥水化过程的组分变化情况。  相似文献   

7.
水泥胶凝材料水化进程及力学特性研究   总被引:1,自引:0,他引:1  
首先简述了热分析的测定原理及其在水泥化学研究中的应用;利用热重方法分析了水泥净浆的水化进程变化规律,研究了不同水灰比的水泥净浆水化程度;并从理论上解释了不同水灰比的水泥净浆水化程度发展规律;而且,对水泥净浆水化过程中的抗压强度进行了测试,试验结果发现其变化趋势与水化程度变化趋势是完全一致的,这充分反映了微观结构与宏观性能之间的关系.  相似文献   

8.
为深入研究水泥浆体中氯离子的扩散性能,更好地考虑水泥颗粒形状特征带来的影响,建立了基于非球形颗粒水化堆积的水泥浆水化模型,通过第三方试验充分验证其可靠性后,明确了长细比对水化度和孔结构特征的影响;将First-passage理论应用于所建立的水泥浆水化模型,提出了综合考虑内、外水化层和未水化层扩散特性的布朗运动算法,并通过对比氯离子扩散试验数据对其可靠性进行了验证;利用建立的布朗运动算法分析了长细比对水泥浆氯离子扩散系数的影响.结果表明,本文建立的分析水泥颗粒形状对氯离子扩散系数影响的新方法,可为混凝土耐久性设计提供参考.  相似文献   

9.
基于R.Berliner的水化动力学模型及水泥水化的化学反应方程式,提出了基于水泥矿物组分含量的水化动力学模型,可用于预测水化速率和水化程度。  相似文献   

10.
过去 2 0年间随着计算机运算能力的飞跃发展 ,水泥材料水化和结构演化的计算机模拟技术取得了长足的进步 ,各国研究人员陆续开发了一些模拟水泥水化和水泥基材料微观结构发展的三维模型 ,并且将这些模型结合实验结果和工程实际应用于水泥基材料的力学性能 ,物理性能 ,渗透性以及耐久性的预测 ,取得了比较满意的成果。按照水泥颗粒及其空间分布的模拟方法 ,目前有代表性的模型可以分为连续基模型 (continuum- based)和数字图像基模型 (digital- image- based)两大类。这些数值模型侧重点不同 ,各有长短 ,选取其中有代表性的四个微观结构模型进行比较 ,旨在为从事水泥基材料计算机模拟的学者提供一些信息和思路。  相似文献   

11.
羟基羧酸盐对水泥水化历程的影响   总被引:1,自引:0,他引:1  
通过对柠檬酸钠、苹果酸钠、酒石酸钠、葡萄糖酸钠及腐植酸钠与聚羧酸减水剂共同作用下水泥净浆流动度、凝结时间及强度的研究及XRD,探讨了羟基羧酸盐对水泥水泥历程的影响规律。结果表明,羟基羧酸盐的引入可提高聚羧酸减水剂的分散性能,延长凝结时间,但不影响3d、7d、28d强度的发展;而水化初期,羟基羧酸盐促进C3A的溶解及AFt的生长,而对C3s有较强的抑制作用,当掺量为0.20%时,浆体CH衍射峰消失;与其他羟基羧酸盐相比,腐植酸钠由于分子量较大,分子结构复杂,其缓凝效果较差。  相似文献   

12.
利用XRD、SEM及化学结合水测定等方法,探讨了磷渣中可溶性氟、磷对C3A的水化作用机理。研究结果表明磷渣中可溶性的氟和磷可以明显延缓C3A的早期水化反应。  相似文献   

13.
研究了水化热抑制剂与不同缓凝剂对水泥凝结时间、砂浆强度的影响,及水化热抑制剂与柠檬酸缓凝剂对水泥单矿(C3A、C3S、C2S)与水泥体系水化历程的影响.结果表明:水化热抑制剂与缓凝剂对水泥的凝结时间均有一定的延缓,并使砂浆强度有所提高,其中柠檬酸与水化热抑制剂使28 d抗压强度分别提高了15.4%、12.9%;水化热抑...  相似文献   

14.
浅析水泥加固土的硬化机理   总被引:1,自引:0,他引:1  
李永华 《山西建筑》2005,31(18):106-107
对水泥加固土硬化机理进行了详细分析,揭示了水泥土孔隙水中Ca(OH)2的不饱和,是由于土颗粒对Ca^2+、CaO和OH^-的大量吸收或损耗,它可大量降低水泥水化产生的CSH凝胶物,致使水泥加固土的强度低下。  相似文献   

15.
胶凝材料的水化热研究综述   总被引:1,自引:0,他引:1  
论文分析了影响胶凝材料水化热的因素,同时提出通过调整水泥熟料的矿物组成、掺入矿物掺合料和外加剂、控制施工温度等方式,能降低水化热及改变水化热释放过程。粉煤灰掺量、水胶比和外加剂均能对碾压混凝土胶凝材料的水化热产生影响。  相似文献   

16.
为揭示富有机质页岩水化损伤机理,以长宁地区龙马溪组页岩为研究对象,借助于XRD衍射、自吸、浸泡、水化应力、水化应变等一系列物理试验,对其水化特征进行了研究。实验结果表明:富有机质页岩以黏土矿物和石英为主,黏土矿物中伊利石和伊蒙混层为主要成分,无蒙脱石;自吸水过程中会发生水化作用,且黏土矿物含量越高,自吸水量越大,水化反应越易发生;水化作用前期较剧烈,后期逐渐趋于稳定;水化过程中可观察到裂纹的萌生、扩展和汇合现象,进一步演化为宏观贯穿裂纹。黏土矿物中伊利石的线性水化应力稍小于蒙脱石,但水化应变却远小于蒙脱石。不同黏土矿物、混层矿物的水化不均匀导致富有机质页岩发生水化损伤现象。  相似文献   

17.
通过等温导热仪对中性钠盐碱矿渣水泥水化热的测定, 研究了中性钠盐碱矿渣水泥的水化历程, 探讨了其水化动力学参数, 指出水泥水化速度常数具有“即时性”, 确立了中性钠盐碱矿渣水泥不同水化阶段时活化能的计算方法, 明确了各水化阶段水化机理的特征。  相似文献   

18.
研究了以溶胶—凝胶法制备的铝酸三钙在水中的早期水化特性.用水化微量热仪测量该水化产生的热量和放热速率,用X射线衍射无标样定量法测定不同水化龄期的水化程度,用X射线荧光分析仪滤纸片法测定水化溶液中的离子浓度.结果表明:用溶胶—凝胶法制备的C3A在与水接触的几分钟内,其水化速率很快,水化程度达70%以上,且水化产物以C3AH6为主。  相似文献   

19.
高掺量粉煤灰矿渣水泥水化进程及水化热的研究   总被引:3,自引:0,他引:3  
掺加适当比例的自制复合活性激发剂,配制了高掺量粉煤灰矿渣水泥胶凝材料,运用扫描电子显微镜(SEM)、X射线衍射(XRD)和差热分析(DTA)等手段研究了胶凝材料不同龄期的水化物相,测量了水化物早期水化热,结果表明,高掺量粉煤灰矿渣水泥具有较好的胶凝性,早期水化放热较低。  相似文献   

20.
本文着重研究了WH-Ⅱ型超缓凝剂对硅酸盐水泥水化、水化热、水化放热速率、凝结时间、强度等的影响,运用XRD、SEM对硅酸盐水泥的水化过程进行跟踪测试,结果表明适量使用WH-Ⅱ型缓凝剂可以得到合适的缓凝效果和增强作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号