共查询到20条相似文献,搜索用时 62 毫秒
1.
《软件》2019,(12)
语音情感识别在人机交互、人工智能(AI)、自然语言处理(NLP)、5G技术等方面扮演着重要的角色。为了克服单模态模型语音情感识别率低和手工调参的缺点,本文首先在Gaurav Sahu的基础模型上增加KNN、CNB和Adaboost单模态模型,提出多模态组合模型C3;然后应用排列组合方法通过计算机实现自动组合,克服GauravSahu手工组合存在的不足;最后用超参数优化方法和交叉验证方法对网络模型进行训练和测试,解决手工调参存在的不足。在IEMOCAP数据集上对本文提出的C3进行实验,实验结果表明,C3比Gaurav Sahu提出的多模态组合模型E2的语音情感识别性能提升1.56%。 相似文献
2.
自动情感识别是一个非常具有挑战性的课题,并且有着广泛的应用价值.本文探讨了在多文化场景下的多模态情感识别问题.我们从语音声学和面部表情等模态分别提取了不同的情感特征,包括传统的手工定制特征和基于深度学习的特征,并通过多模态融合方法结合不同的模态,比较不同单模态特征和多模态特征融合的情感识别性能.我们在CHEAVD中文多模态情感数据集和AFEW英文多模态情感数据集进行实验,通过跨文化情感识别研究,我们验证了文化因素对于情感识别的重要影响,并提出3种训练策略提高在多文化场景下情感识别的性能,包括:分文化选择模型、多文化联合训练以及基于共同情感空间的多文化联合训练,其中基于共同情感空间的多文化联合训练通过将文化影响与情感特征分离,在语音和多模态情感识别中均取得最好的识别效果. 相似文献
3.
情感识别依靠分析生理信号、行为特征等分析情感类别,是人工智能重要研究领域之一。为提高情感识别的准确性和实时性,提出基于语音与视频图像的多模态情感识别方法。视频图像模态基于局部二值直方图法(LBPH)+稀疏自动编码器(SAE)+改进卷积神经网络(CNN)实现;语音模态基于改进深度受限波尔兹曼机(DBM)和改进长短时间记忆网络(LSTM)实现;使用SAE获得更多图像的细节特征,用DBM获得声音特征的深层表达;使用反向传播算法(BP)优化DBM和LSTM的非线性映射能力,使用全局均值池化(GAP)提升CNN和LSTM的响应速度并防止过拟合。单模态识别后,两个模态的识别结果基于权值准则在决策层融合,给出所属情感分类及概率。实验结果表明,融合识别策略提升了识别准确率,在中文自然视听情感数据库(cheavd)2.0的测试集达到74.9%的识别率,且可以对使用者的情感进行实时分析。 相似文献
4.
当前多模态语音情感识别(speech emotion recognition,SER)数据集规模较小,蕴含信息量较大,导致模型对各模态信息的拟合度不足,且无法挖掘出数据背后蕴含的信息。针对该问题,提出了基于对比学习的多模态语音情感分类网络。一方面在网络中引用跳连接(skip connections,SC)方法,有效解决了网络退化问题;另一方面借助对比学习(contrastive learning,CL)理论提出一种新的Loss计算方法,加快模型的拟合速度。模型在IEMOCAP数据集上进行实验,未加权精度(UA)为82.68%,加权精度(WA)为82.35%,实验结果表明了该模型的优越性。 相似文献
5.
针对生理信号情感识别问题,提出一种基于图神经网络(GNN)和注意力的双模态情感识别方法。首先,使用GNN对脑电(EEG)信号进行分类;然后,使用基于注意力的双向长短期记忆(Bi-LSTM)网络对心电(ECG)信号进行分类;最后,通过Dempster-Shafer证据理论融合EGG和ECG分类结果,从而提高情感识别任务的综合性能。为验证所提方法的有效性,邀请20名受试者参与情感激发实验,并收集了受试者的EGG、ECG信号。实验结果表明,所提方法的二分类准确率在valence维度和arousal维度分别为91.82%和88.24%,相较于单模态EEG方法分别提高2.65%和0.40%,相较于单模态ECG方法分别提高19.79%和24.90%。可见,所提方法能够有效地提高情感识别的准确率,为医疗诊断等领域提供决策支持。 相似文献
6.
研究目的就是通过深入分析各种语音情感特征,找出其中对情感识别有较大贡献的特征,并寻找适合的模型将有效特征加以利用。分析和研究了多位科学家在进行语音情感分析过程中采用的方法和技术,通过总结和创新建立了语音情感语料库,并成功地提取了相关的语音信号的特征。研究了基音频率、振幅能量和共振峰等目前常用的情感特征在语音情感识别中的作用,重点研究了MFCC和?驻MFCC,实验发现特征筛选后系统的识别效果有着一定程度的提高。将处理后的频谱特征参数同原有的BP人工神经网络模型有效地结合起来,形成完整的语音情感识别系统,取得了较为满意的识别结果。 相似文献
7.
8.
9.
随着网络平台上各类图像、视频数据的快速增长,多模态情感分析与情绪识别已成为一个日益热门的研究领域.相比于单模态情感分析,多模态情感分析中的模态融合是一个亟待解决的关键问题.受到认知科学中情感唤起模型的启发,提出一种能够模拟人类处理多通道输入信息机制的深度情感唤醒网络(DEAN),该网络可实现多模态信息的有机融合,既能处理情绪的连贯性,又能避免融合机制的选择不当而带来的问题.DEAN网络主要由以下3部分组成:跨模态Transformer模块,用以模拟人类知觉分析系统的功能;多模态BiLSTM系统,用以模拟认知比较器;多模态门控模块,用以模拟情感唤起模型中的激活结构.在多模态情感分析与情绪识别的3个经典数据集上进行的比较实验结果表明,DEAN模型在各数据集上的性能均超越了目前最先进的情感分析模型. 相似文献
10.
模糊认知图(Fuzzy Cognitive Map,FCM)作为一种图分析方法已在数据分类方面得到应用,为了提高其在语音情感识别中的分类精度,提出了融合FCM的方法。其中包括特征级融合和决策级融合两种方式。详细分析了这两种方式并提出将传统的模糊认知图的数值型输出转化为概率型输出,为不同特征提供了统一范围的初级识别结果。在此基础上,提出了自适应权值决策级融合方法。该方法充分考虑了分类器对不同特征的识别准确率差异。实验证明,提出的融合FCM方法相较于单一特征和单一分类器,具有更优的分类性能,同时大大降低了情感间的混淆程度。 相似文献
11.
样本平衡对机器学习至关重要,在不平衡数据集中,虽然某些类别的样本数量可能很少,但其重要性可能更高。研究了基于不平衡数据集的语音情感识别技术。在不同信噪比下采用不同噪声对不平衡基线数据集EMODB和IEMOCAP进行扩充,构建含噪数据集EMODBM和IEMOCAPM;采用SMOTE、RandomOverSampler、SMOTEENN、ADASYN、TomekLinks以及SMOTETomek等6种技术对基线数据集和含噪数据集进行重采样,实现类别样本平衡;在基线数据集和扩充数据集上分别提取21维的低级描述符特征;采用新提出的模型MA-CapsNet验证重采样技术的有效性。实验表明,重采样后各类情感样本基本平衡,使模型的学习更公平、更客观,并且模型在重采样数据集上的鲁棒性更好。 相似文献
12.
语音情感识别任务的训练数据和测试数据往往来源于不同的数据库,二者特征空间存在明显差异,导致识别率很低。针对该问题,本文提出新的构图方法表示源和目标数据库之间的拓扑结构,利用图卷积神经网络进行跨语料库的情感识别。针对单一情感特征识别率不高的问题,提出一种新的特征融合方法。首先利用OpenSMILE提取浅层声学特征,然后利用图卷积神经网络提取深层特征。随着卷积层的不断深入,节点的特征信息被传递给其他节点,使得深层特征包含更明确的节点特征信息和更详细的语义信息,然后将浅层特征和深层特征进行特征融合。采用两组实验进行验证,第1组用eNTERFACE库训练测试Berlin库,识别率为59.4%;第2组用Berlin库训练测试eNTERFACE库,识别率为36.1%。实验结果高于基线系统和文献中最优的研究成果,证明本文提出方法的有效性。 相似文献
13.
为有效利用语音情感词局部特征,提出了一种融合情感词局部特征与语音语句全局特征的语音情感识别方法。该方法依赖于语音情感词典的声学特征库,提取出语音语句中是否包含情感词及情感词密度等局部特征,并与全局声学特征进行融合,再通过机器学习算法建模和识别语音情感。对比实验结果表明,融合语音情感词局部特征与全局特征的语音情感识别方法能取得更好的效果,局部特征的引入能有效提高语音情感识别准确率。 相似文献
14.
基于粒子群优化神经网络的语音情感识别 总被引:1,自引:0,他引:1
提出了一种基于粒子群优化算法的人工神经网络,并把它应用到语音情感识别系统中。依据情感的维度空间模型,分别提取了韵律特征与音质特征,研究了谐波噪声比特征随情感类别的变化。利用粒子群优化算法(PSO)训练随机产生的初始数据,优化神经网络的连接权值和阈值,快速地实现网络的收敛。在实验中比较了BP神经网络、RBF神经网络与PSO神经网络分别用于语音情感识别的识别率,PSO神经网络的平均识别率高于BP神经网络6.7%,高于RBF神经网络5.4%。结果显示,粒子群优化神经网络用于语音情感识别提高了识别性能。 相似文献
15.
针对现有对话情绪识别方法中对时序信息、话语者信息、多模态信息利用不充分的问题,提出了一个时序信息感知的多模态有向无环图模型(MTDAG)。其中所设计的时序感知单元能按照时间顺序优化话语权重设置,并收集历史情绪线索,实现基于近因效应下对时序信息和历史信息更有效的利用;设计的上下文和话语者信息融合模块,通过提取上下文语境和话语者自语境的深度联合信息实现对话语者信息的充分利用;通过设置DAG(directed acyclic graph)子图捕获多模态信息并约束交互方向的方式,在减少噪声引入的基础上充分利用多模态信息。在两个基准数据集IEMOCAP和MELD的大量实验表明该模型具有较好的情绪识别效果。 相似文献
16.
针对单一模态情感识别精度低的问题,提出了基于Bi-LSTM-CNN的语音文本双模态情感识别模型算法.该算法采用带有词嵌入的双向长短时记忆网络(bi-directional long short-term memory network,Bi-LSTM)和卷积神经网络(convolutional neural networ... 相似文献
17.
本文介绍了语音情感识别领域的最新进展和今后的发展方向,特别是介绍了结合实际应用的实用语音情感识别的研究状况。主要内容包括:对情感计算研究领域的历史进行了回顾,探讨了情感计算的实际应用;对语音情感识别的一般方法进行了总结,包括情感建模、情感数据库的建立、情感特征的提取,以及情感识别算法等;结合具体应用领域的需求,对实用语音情感识别方法进行了重点分析和探讨;分析了实用语音情感识别中面临的困难,针对烦躁等实用情感,总结了实用情感语音语料库的建立、特征分析和实用语音情感建模的方法等。最后,对实用语音情感识别研究的未来发展方向进行了展望,分析了今后可能面临的问题和解决的途径。 相似文献
18.
域自适应算法被广泛应用于跨库语音情感识别中;然而,许多域自适应算法在追求减小域差异的同时,丧失了目标域样本的鉴别性,导致其以高密度的形式存在于模型决策边界处,降低了模型的性能。基于此,提出一种基于决策边界优化域自适应(DBODA)的跨库语音情感识别方法。首先利用卷积神经网络进行特征处理,随后将特征送入最大化核范数及均值差异(MNMD)模块,在减小域间差异的同时,最大化目标域情感预测概率矩阵的核范数,从而提升目标域样本的鉴别性并优化决策边界。在以Berlin、eNTERFACE和CASIA语音库为基准库设立的六组跨库实验中,所提方法的平均识别精度领先于其他算法1.68~11.01个百分点,说明所提模型有效降低了决策边界的样本密度,提升了预测的准确性。 相似文献
19.
针对卷积层存在的特征冗余问题,提出了一种基于卷积神经网络的特征图聚类方法.首先通过预训练网络参数提取网络最后一层卷积层的特征图,然后对特征图进行聚类操作,取聚类中心构成新的特征图集合,以聚类后的特征图集作为数据集训练分类器.将有监督的深度学习方法与传统的机器学习方法相结合,使用特征图聚类进行特征去冗余让网络学习到更有效... 相似文献
20.
基于神经网络的语音识别技术研究 总被引:5,自引:0,他引:5
对BP神经网络在特定人语音识别技术中的应用进行了探索性的研究,进而对非特定人语音识别做了一定的实验和研究。通过对比分析了传统的语音识别方法——模板匹配法和人工神经网络语音识别方法的优缺点。神经网络可以得到较高的识别准确度,但是训练速度慢是它的弱点,因此,针对经典的BP算法训练速度慢的缺点,对BP网络加以改进,提高网络训练速度,通过改进使神经网络用于语音识别的各种优越性充分发挥。 相似文献