首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在不同温度对Fe47Mn30Co10Cr10B3间隙高熵合金进行不同的形变和退火处理,使用电子背散射衍射和电子通道衬度像等手段对样品进行表征,研究了形变和退火对其微观组织结构演变的影响。结果表明,在小应变量条件下,随着形变温度的降低,主导的形变机制从位错滑移转变为相变诱导塑性;在室温形变条件下,随着应变量的增大,主导的形变机制由位错滑移转变为相变诱导塑性。对大应变量的样品退火,随着退火温度的提高,微观组织从形变态(600℃-5 min)、部分再结晶态(800℃-5 min)到完全再结晶态(1000℃-5 min)的演变。在1000℃退火条件下,随着退火时间的延长,微观组织由部分再结晶态(1 min)演变到完全再结晶态(5 min和15 min),且相组成由γ单相演变为γ+ε双相。退火不能改变形变态中第二相颗粒沿着轧向的分布。拉伸实验结果表明合金的屈服强度为326 MPa,抗拉强度为801.9 MPa,延伸率为26.8%,实现了较好的强韧化性能且其断裂机制为韧性断裂。  相似文献   

2.
采用真空电弧熔炼炉制备了CoFeNiCrMnBx高熵合金,并对其退火处理。结果表明:CoFeNiCrMnB0.15和CoFeNiCrMnB0.20合金经1 100℃×20 h退火后,枝晶间组织均为颗粒状Cr2B相,且随着B含量的增加,颗粒状Cr2B相也增多。CoFeNiCrMnB0.20合金的屈服强度和抗拉强度分别为496 MPa和890 MPa,较铸态CoFeNiCrMn合金的分别提高了104.0%和79.4%。  相似文献   

3.
秦忠  李新梅  田志刚  黄永  陈霸 《功能材料》2022,(8):8153-8158
为了研究不同退火温度对CoCrCu0.5FeTi0.5Alx高熵合金性能的影响,通过真空电弧熔炼CoCrCu0.5FeTi0.5Alx(x=0、0.4、0.8)高熵合金并使用真空管式炉进行600,800,1 000℃退火实验。使用XRD测试合金的晶体结构,采用SEM观察合金微观组织,利用维氏显微硬度计和电化学工作站测试高熵合金的显微硬度和耐腐蚀性能。结果表明,退火后的高熵合金出现新的Laves相,合金相主要由FCC、BCC和Laves相混合组成。在CoCrCu0.5FeTi0.5Alx(x=0、0.4、0.8)高熵合金中,x=0.4的硬度在600℃退火状态下达到最大值为883.15HV。1 000℃退火下的CoCrCu0.5FeTi0.5Al0.4耐腐蚀性能达到最优,腐蚀电压和腐蚀电流密度分别为-0.396 V和6.800×1...  相似文献   

4.
通过设计不同Cu含量的CoCrFeNi高熵合金,筛选出一种具有较高强度和导电性的Cu基高熵合金。采用X射线衍射仪、光学显微镜、扫描电子显微镜、力学性能测试机、电阻测试仪研究了铸态CoCrFeNiCux(x=1,2,3,4,5)高熵合金的组织、力学和导电性能。当x=1,2时,合金为FCC单相;当x≥3时,合金除了FCC相外还存在其他析出相。当x=1时,合金的微观形貌由等轴晶组成;当x≥1时,合金的微观形貌是树枝晶和等轴晶形貌,枝晶间的Cu含量较高。合金的拉伸强度和伸长率均随着Cu含量的升高先降低后升高,其中CoCrFeNiCu3合金的综合力学性能最差,抗拉强度仅约120 MPa,伸长率不到1%。CoCrFeNiCu5合金具有最优异的综合力学性能,其抗拉强度约为370 MPa,伸长率约为11%。合金的电阻率随着Cu含量的升高逐渐降低,CoCrFeNiCu5合金的电阻率最低,导电性能最好,同时,电阻随着温度的升高而升高。测试了5种合金的热膨胀系数,其随着Cu含量的升高呈波浪性上升。结合拉伸测试和导电性能测试结果,CoCrFeNiCu5合金具有优异的综合力学性能和导电性能。  相似文献   

5.
AlCoCrFeNi2.1共晶高熵合金是由体心立方相和面心立方相交替排布的层片状组织构成。这种独特的组织形式使其具有良好的力学性能,从而受到广泛关注。以粗大层片状存在的硬脆体心立方相限制了AlCoCrFeNi2.1共晶高熵合金力学性能的进一步提升。本工作基于此提出使用热轧及退火处理的方法对铸态AlCoCrFeNi2.1高熵合金进行轧制改性处理,从而进一步提升AlCoCrFeNi2.1共晶高熵合金的力学性能。本试验热轧温度分别选取800℃、1 000℃和1 200℃,通过力学性能测试、X射线衍射相分析、组织分析等相关试验,探究不同温度对AlCoCrFeNi2.1共晶高熵合金性能的影响。结果表明:经轧制后材料的抗拉强度和延伸率均得到提高,轧制温度为800℃时材料的抗拉强度为1 475 MPa、延伸率为20.4%,性能提升最佳,较铸态合金分别提升46.8%和32.5%;轧制温度为1 000℃时性能提升最弱;三种温度下硬度变化规律与强度变化规律一致,经800℃轧制后材料硬度值达到最大值...  相似文献   

6.
7.
用激光熔覆工艺在40Cr钢表面制备CoCrFeNiTix (x=0、0.2、0.5、0.8)高熵合金涂层并计算其热力学参数,使用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)、显微硬度仪、摩擦磨损试验机等手段检测合金的物相组成、组织、元素分布、硬度及耐磨性,研究了Ti元素含量对其显微组织和耐磨性能的影响。结果表明:随着Ti元素含量的提高,合金物相在面心立方(FCC)结构的基础上形成了体心立方(BCC)结构,熔覆层中部的组织由晶界明显、晶粒分布均匀的等轴晶组成,最后形成了柱状树枝晶;随着Ti元素含量的提高,合金横截面的硬度逐渐提高,最高为412.32 HV0.2,比基体的硬度提高了1.8倍;涂层的磨损量和摩擦系数均随之降低,Ti含量为0.8时涂层其耐磨性能最优,磨损量最小为6.8 mg,摩擦系数为0.35。涂层的磨损机制,以磨粒磨损、粘着磨损和氧化磨损为主。  相似文献   

8.
通过真空电弧熔炼制备了Al0.5FeCoCrNi高熵合金,采用轧制方法获得轧制变形量分别为30%、60%和90%的塑性变形合金,利用金相显微镜、X射线衍射分析仪、扫描电镜及附带能谱分析仪、透射电镜、硬度计和摩擦磨损试验机,研究塑性变形对合金组织结构和性能的影响。结果表明,塑性变形后合金的枝晶相被压扁拉长,枝晶间相沿轧制方向被拉长。合金的加工硬化能力强,轧制变形量分别为30%、60%和90%的合金的显微硬度分别为268.8HV,348.4HV和393.9HV,但耐磨性下降。  相似文献   

9.
为给AlxCrFeNi3Ti0.3高熵合金在摩擦磨损领域的应用提供技术支撑和理论支持,利用电弧熔炼技术制备了AlxCrFeNi3Ti0.3高熵合金,通过X射线衍射仪、维氏硬度计、摩擦试验机、万能试验机、三维轮廊仪、扫描电镜等研究了不同Al含量对高熵合金组织、力学与摩擦学性能的影响。结果表明:Al的加入使高熵合金由单一的FCC相转变为FCC和BCC两相共存,且两相均呈现出树枝晶结构。随着Al含量的增加,合金的密度降低,但合金的硬度、屈服强度和抗压强度显著增大,表现出优异的综合力学性能。Al的加入显著改善了高熵合金的耐磨性能,其中Al1.2CrFeNi3Ti0.3高熵合金的室温耐磨性能较不含Al的高熵合金提高了约8倍,且合金的磨损机制由磨粒磨损转变为氧化磨损。其强度和硬度的提高以及磨损表面硬质氧化层的形成是合金耐磨性能改善的主要原因。  相似文献   

10.
AlFeCuCoNiCrTix高熵合金的退火组织及硬度变化   总被引:2,自引:0,他引:2  
利用XRD、SEM和DSC方法研究了AlFeCuCoNiCrTix(x=0、0.5、1)高熵合金退火态的微观组织、相结构以及相转变,同时利用洛氏硬度仪测量了各退火温度下的硬度变化.结果表明,随着退火温度的逐渐升高,TiO合金的相组成大约在636℃以后会逐渐由原来的fcc+bcc结构变为fcc1+fcc2+bcc结构,其硬度在636℃会略微增加,在636~1112℃之间下降明显,在1112℃以后基本维持不变;对于Ti0.5合金,退火时其相组成基本没有影响,一直保持fcc+bcc1+bcc2的结构,其硬度在607℃会略微增加,在607~1092℃之间下降明显,在1092℃以后基本维持不变;而对于Til舍金,当退火温度达到800℃时,会有Fe2Ti型的Laves相析出,这有助于提高材料的硬度,当退火温度达到1200℃时,其硬度可以提高到51.3HRC.  相似文献   

11.
高熵合金由于具有优异的机械性能及耐蚀性能在涂层工业领域备受关注。采用同步送粉激光熔覆技术在Q235钢表面制备了CoCrFeNiMox高熵合金涂层,研究了涂层的组织结构和耐蚀性能,并结合第一性原理计算分析了涂层耐蚀机理。研究结果表明:CoCrFeNiMo0.1、CoCrFeNiMo0.2高熵合金涂层是由fcc相组成,而CoCrFeNiMo0.3高熵合金涂层则由fcc相和σ相组成。合金的晶粒主要呈树枝晶,枝晶间富集Cr、Mo元素,枝晶内富集Co、Fe元素。在3.5%(质量分数)NaCl溶液中,CoCrFeNiMox高熵合金涂层具有优良的综合耐蚀性能;并且随着Mo元素含量的增加,涂层的腐蚀电位正移,腐蚀电流密度减少,钝化区间变长,阻抗弧半径增大,电极反应阻力增强。通过第一性原理计算证明,涂层较高的耐蚀性能与表面致密的钝化膜形成密切相关。  相似文献   

12.
采用真空电弧熔炼法制备FeCoNiAlCrx(x=0,0.2,0.4,0.6,0.8,原子比,下同)高熵合金铸锭,探究Cr含量对该合金微观结构、组织及力学性能的影响。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)对合金相结构、微观组织及成分进行分析表征;采用万能试验机对合金压缩性能进行测试。结果表明:随着Cr含量的增加,合金的微观结构由单相BCC结构转变为BCC+FCC混合结构;合金微观组织由等轴晶逐步转变为树枝晶,并且合金晶粒尺寸发生了明显细化。本实验制备的五种合金都具有较好的力学性能,合金的抗压强度随着Cr含量的增加大幅度增强,当x=0时合金抗压强度和塑性应变最低,分别为1500 MPa和13.56%;当x=0.8时,合金抗压强度和塑性应变达到最大,分别为2460 MPa和30.09%;合金抗压强度的增幅达64%。这表明Cr添加对FeCoNiAlCrx高熵合金的组织细化、抗压强度和塑性的提升具有重要作用。  相似文献   

13.
目的 研究CoCrFeNi高熵合金组织和性能在添加Be后的变化,通过高熵合金固溶体相形成规律,设计从面心立方固溶体转变至含体心立方及金属间化合物的(CoCrFeNi)1-xBex系列高熵合金。方法 通过计算验证(Co Cr FeNi)1-xBex系列高熵合金的成分是否落入固溶体区域,并对上述成分高熵合金组织和力学性能进行研究。结果 Be元素的原子数分数为4%时,高熵合金仍为单一的FCC相结构,随着Be元素含量的进一步增加,基体中出现BCC相和金属间化合物。Be的添加使得(Co Cr Fe Ni)1-xBex高熵合金的屈服强度及显微硬度均大大提高,同时密度降低。结论 根据相形成规律设计的(Co Cr Fe Ni)1-xBex系列高熵合金表明,适量添加Be元素可以改善CoCrFeNi高熵合金的综合物理力学性能。  相似文献   

14.
多主元高熵合金FeCoNiCuxAl微观组织结构和性能   总被引:1,自引:0,他引:1  
研究了不同Cu含量的FeCoNiCuxAl高墒合金的微观引织和性能特点,(x表示摩尔比,x=0、0.5、0.8、1.0、1.5、2),分别用X衍射、扫描电镜和维氏硬度测试Cu含量的变化对合金组织和硬度的影响。研究表明,此合金体系容易形成简单FCC结构和BCC结构的固溶体,Cu含量增加会促进FCC固溶体的形成。Ca的含量的变化对合金硬度的影响较大。随着Cu含量的增加,合金的硬度显著降低,硬度的高低主要取决于显微组织形态和体系中BCC固溶体的含量的多少。  相似文献   

15.
通过对试样微观组织及力学性能进行实验,研究了在线退火温度对TiNi合金丝材组织和性能的影响。实验表明,TiNi合金丝材经过(750~830℃)×2.3min在线退火处理后,丝材抗拉强度均大于960MPa,屈服强度均大于460MPa,延伸率均大于24.5%,断面收缩率均达到25%以上,830℃×2.3min在线退火处理后延伸率和断面收缩率最高,分别为54.5%和64.0%;说明经过830℃×2.3min在线退火处理后丝材塑性得到改善,达到最优。随着在线退火温度的升高,丝材的显微硬度逐渐降低。由微观组织可以看出,830℃×2.3min在线退火处理后丝材晶粒得到了细化。  相似文献   

16.
利用维氏硬度计(HV)、X射线衍射仪(XRD)、电子背散射衍射(EBSD)和透射电镜(TEM),研究了90%冷轧Al0.3CoCrFeNi高熵合金在900℃退火过程中的微观组织和织构演变规律。结果表明:退火0.5h合金发生完全再结晶,退火孪晶形成于再结晶面心立方(FCC)晶粒内;经退火1h后,富集Al-Ni原子的有序体心立方(BCC)相优先于FCC相的晶界处形核,且FCC相和BCC相均随着退火时间(1h~10h)的延长而发生晶粒长大。再结晶FCC相的织构组分主要为强{123},〈634〉S织构和强α-{110}纤维织构,{001}〈100〉立方织构随着退火时间的延长也逐渐转化为强织构;再结晶过程的进行使无择优取向的初始BCC晶核选择性长大,{111}〈112〉织构从而演变为强BCC相织构。  相似文献   

17.
通过XRD,SEM,EDS分析和显微硬度测试,系统研究了Si含量对AlCoCrNiSix高熵合金铸态组织的相结构变化、微观组织形貌特征和力学性能。结果表明:随Si含量的增加,合金相结构由单一的bcc1固溶体结构逐步转化为bcc1+bcc2结构共存,其中bcc1为AlNi基的固溶体,bcc2为CrSi固溶体。随Si含量的增加,合金的铸态组织由枝晶形态向胞状形态转变。微观组织中Al,Ni主要存在于枝晶内,Si则偏析于枝晶间。Si具有显著提高合金硬度的作用,硬度最大值达到HV991。  相似文献   

18.
将机械合金化(MA)与放电等离子烧结(SPS)相结合制备了难熔TiVNbTa高熵合金,研究了这种合金的机械合金化过程、相组成和显微组织,以及烧结温度和O、N含量对其力学性能的影响。结果表明:机械合金化后高熵合金粉末为BCC结构,放电等离子烧结成的块体高熵合金由BCC基体和FCC析出相组成,其析出相为TiN+TiC+TiO的复合物。烧结温度为1100℃的高熵合金具有良好的综合力学性能,压缩屈服强度达到1506.3 MPa,塑性应变为33.2%。随着烧结温度的提高,合金发生了从准脆性到塑性再到脆性断裂的转变。O和N含量的提高对高熵合金强度的影响较小,但是使其塑性显著降低。  相似文献   

19.
采用激光熔覆技术在40 Cr钢基材表面制备CoCuFeNiTi高熵合金涂层,使用SEM、XRD和EDS等手段分析涂层的显微组织和相组成,研究了涂层的制备工艺、显微硬度、耐磨损和耐腐蚀性能。结果表明:在激光功率为700 W、扫描速度为6 mm/s条件下制备的CoCuFeNiTi高熵合金涂层表面质量较好,涂层与基体之间形成了良好的冶金结合;这种涂层由FCC相、少量的Cu4Ti相和微纳级富Cu析出相构成,具有典型的树枝晶显微组织,Cu元素在枝晶间偏聚并形成微纳级富Cu析出相;涂层的显微硬度约为438.83HV,是基体的1.7倍;涂层的磨损质量损失约为基体的1/2,表明这种涂层具有更高的耐磨损性能。涂层的磨损,以黏着磨损为主伴有一定程度的磨粒磨损;这种涂层在pH=4的酸性溶液和3.5%NaCl溶液中的耐蚀性均优于基体。  相似文献   

20.
选取与天然铬铁矿粉有效成分相近的Al、Cr、Fe、Ni、Si元素为高熵合金成分,采用激光烧结技术制备CrFeNiAlxSi系高熵合金,研究了Al含量对CrFeNiAlxSi系高熵合金的物相结构、显微组织、密度和孔隙率、显微硬度、耐磨和抗高温氧化性能的影响。结果表明:CrFeNiAlxSi(x=0.2、0.4、0.6、0.8、1.0)系高熵合金由BCC+FCC相构成,随着Al含量的提高FCC相减少;x=0.6的合金硬度最高,为813.3HV;合金的密度降低孔隙率提高,x=0.2的合金密度最大,为4.21 g·cm-³,孔隙率最低,为26.46%;x=0.6的合金耐磨性能最佳,磨损率为69.50 mg·cm-²;随着Al含量的提高,合金的抗高温氧化性能明显提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号