首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
将不稳定的食品活性成分包埋在以淀粉为基质的微胶囊中,可赋予芯材优良的稳定性和一定的功能效应。将芯材包覆在以淀粉为基质的微胶囊中,可以提高内容物的抗氧化稳定性,并且可以达到活性物质靶向释放的目的。本文综述了近几年国内外有关于淀粉基微胶囊的研究进展,主要阐述了目前主流的制备方法,讨论了淀粉基壁材对生物活性物成分的包埋特性,对其控释特性、应用进展进行综述,为拓展淀粉在食品工业中的应用提供理论依据。  相似文献   

2.
一种新型DHA微胶囊制备方法,即采用复凝聚法和二次包埋工艺相结合来制备DHA微胶囊。复凝聚法是以明胶和阿拉伯胶为壁材,DHA油脂为芯材,制备DHA微胶囊。二次包埋技术是指将复凝聚法制成的DHA微胶囊湿囊产品选用某种壁材进行再次包埋,在复凝聚法所用壁材的基础上进行加固,改善微胶囊在喷雾干燥过程中囊壁产生的部分裂缝和孔洞,达到提高DHA微胶囊的贮藏稳定性以及延长其货架期的目的。通过研究微胶囊的包埋率和收率,可以得到高品质的微胶囊产品。影响微胶囊包埋率和收率的因素有很多,本文主要研究芯材壁材比例、明胶/阿拉伯胶比率和二次包埋工艺中的壁材组成对DHA微胶囊收率和包埋率的影响。实验结果表明,采用复凝聚法和二次包埋工艺制备DHA微胶囊的优化配方为芯材壁材比1∶2,明胶/阿拉伯胶比率1∶1,二次包埋壁材选用变性淀粉。  相似文献   

3.
微胶囊技术在以食品加工为代表的诸多领域中应用广泛。壁材的选择对于食品微胶囊的性能有着极为重要的影响,这些性能包括食品微胶囊的包埋率等工艺参数以及对芯材的保护能力。近年来,改性多糖越来越多地作为壁材应用于食品微胶囊制备中,相关应用研究也逐渐成为热点。本文概述了改性淀粉、改性纤维素和改性壳聚糖这三大类改性多糖作为食品微胶囊壁材的应用进展,并对其发展趋势与前景进行了展望。  相似文献   

4.
肉桂精油是一种从肉桂树皮中提取的以醛类和酯类为主要成分的挥发性油,由于其易受贮藏条件的影响使得主要成分挥发而导致抑菌和抗氧化效果减弱,因此利用高分子物质包埋肉桂精油形成微胶囊,不仅可以提高肉桂精油的稳定性,还能降低其在贮藏过程中的挥发损耗。本研究以肉桂精油为芯材,β-环糊精为壁材,采用饱和水溶液法制备肉桂精油微胶囊,首先建立了包埋率与芯壁比、壁材浓度、包埋温度、包埋时间四个单因素之间的数学模型,在单因素试验的基础上进行响应面优化试验,从而确定肉桂精油微胶囊的最佳包埋工艺参数。结果表明,芯壁比为1∶8、壁材浓度为29%、包埋温度为51℃条件下反应1.9 h后包埋效果最佳,包埋率达到了80.19%,此结果为肉桂精油微胶囊制备工艺提供了有效的参数支持。  相似文献   

5.
目的:以紫甘薯花青素为芯材,筛选能提高其水相稳定性的壁材并采用响应面法优化微胶囊制备工艺条件。方法:以包埋率为考察指标,利用Box-Behnken实验和方差分析,从包埋温度、包埋时间、壁材浓度、壁材芯材质量比四个方面优化微胶囊制备工艺条件。并对所制备的微胶囊进行电镜扫描和稳定性研究。结果:筛选玉米朊作为壁材,获得优化制备工艺条件为:包埋时间30 min、包埋温度32℃、壁材浓度1%、壁材芯材质量比5∶2.2(w/w),此时紫甘薯花青素微胶囊包埋率达到81.55%±0.89%,其密度为2.88 g/m L,含水率为4.42%,紫甘薯花青素微胶囊为类似圆球状的紫色粉末,该工艺明显提高了紫甘薯花青素水相热稳定性,p H稳定性和室外光稳定性。结论:实验结果表明,以玉米朊作为壁材进行紫甘薯花青素微胶囊化是提高其水相稳定性的一种较好方法。  相似文献   

6.
以柚子籽油为芯材,对喷雾干燥法制备微胶囊的工艺进行研究,优化得到的最佳工艺条件为:大豆分离蛋白/β-环糊精为复合壁材,壁材间质量比1∶0.5、壁材质量分数30%、芯壁比1∶1、乳化剂1.5%、进口温度170℃。由此得到柚子籽油微胶囊包埋率达到(88.9±2.1)%,包埋效果良好。同时对微胶囊产品进行了基本性质和稳定性研究,结果表明该产品具有良好的特性和稳定性,基本满足一般食品加工要求。  相似文献   

7.
微胶囊技术是一种利用壁材特性将芯材包埋起来的方法,该技术能很好地保护芯材生理活性的稳定性,遮掩食品中产生的不良风味,提升有效成分的释放性能,增加生物利用率等,在食品和医药等领域中被广泛应用。本文主要阐述了微胶囊技术及几种制备方法,并介绍了几种常见的营养功能原料多肽、油脂、益生菌的微胶囊化在食品中的应用进展,为微胶囊技术的发展和新型食品的研发奠定了一定的基础,进而更好地促进食品工业化的发展。  相似文献   

8.
刘可  段旭 《食品工业科技》2015,(1):226-229,234
采用微胶囊化方法提高天然红花色素的稳定性,以推广天然红花黄色素在食品中的使用。本文首次采用多孔淀粉为吸附剂,使用明胶对天然红花黄色素进行包埋,制备红花黄色素微胶囊,并对其稳定性进行了研究。研究结果表明:其微胶囊化最佳工艺条件为包埋温度70℃,包埋时间2h,芯壁材比1∶40,此时红花黄色素的包埋率高达89.5%。其水溶性有所提高,红花黄色素微胶囊对温度、酸碱、光照、金属离子和氧化还原剂的稳定性较强。  相似文献   

9.
陈雨露  吕沛峰  袁芳 《食品科学》2021,42(19):134-140
分别以菊粉、麦芽糊精、海藻糖为壁材,以包埋番茄红素的乳清分离蛋白-壳聚糖双层乳液为芯材,使用喷雾干燥法制备番茄红素微胶囊。探究不同壁材、芯壁质量比对微胶囊包埋率、微观形貌、贮藏稳定性以及在酸性饮料模拟介质中稳定性、体外模拟释放的影响,以确定最佳新型番茄红素微胶囊的制备条件。结果表明:不同微胶囊的包埋率稳定在72.97%~81.90%之间,所有样品均呈现出典型的球状结构;随着芯壁质量比的降低,微胶囊中的番茄红素在贮藏期和酸性环境下的物化稳定性均明显增加;与菊粉相比,以麦芽糊精和海藻糖为壁材的微胶囊可实现番茄红素在模拟胃肠液中的控制释放。本研究有助于进一步开发番茄红素递送载体,从而促进其产业化应用。  相似文献   

10.
单凝聚法芝麻油微胶囊制备工艺研究   总被引:2,自引:1,他引:1  
为了提高芝麻油的稳定性和实用性,通过单凝聚法,以明胶为壁材,芝麻油为芯材,添加适量的乳化剂来制备微胶囊化芝麻油。以微胶囊成型效果和包埋率为指标,研究了壁材质量分数、芯壁比、乳化剂单甘脂浓度及操作温度对包埋效果的影响。在单因素试验的基础上,采用响应面法确定了单凝聚法制备芝麻油微胶囊的最佳工艺。实验结果表明:最佳工艺为明胶质量浓度4%,芯壁比1∶4,单甘脂浓度0.3%,操作温度60℃时,所得芝麻油微胶囊的包埋率最大为79.42%。  相似文献   

11.
复合凝聚法制备鱼油微胶囊技术的研究   总被引:3,自引:0,他引:3  
研究了采用复合凝聚法制备鱼油微胶囊的工艺和技术.比较了不同壁材、壁材浓度、芯壁比、pH等工艺参数对微胶囊形态及包埋率、产率和载量的影响,确定了最佳工艺参数如下:壁材浓度1%,芯壁比1:1,凝聚pH为4.0.上述条件下.微胶囊形态完好,平均粒径为69.53μm,微胶囊化效率为90.9%,产率为91.0%,载量为63.9%.采用SPME-GC-MS研究了微胶囊化前后鱼油的挥发性成分的变化,表明微胶囊化可以包埋部分挥发性成分,掩盖一定的鱼腥味.  相似文献   

12.
不饱和脂肪酸不仅对维持人体健康起着重要作用,也是功能性食品的重要原料,但其在加工和储藏的过程中容易氧化导致劣变。微胶囊化处理是一种可以有效避免不饱和脂肪酸氧化,并增强其稳定性的加工方式。本文在阐述了不饱和脂肪酸的生理功能特性及其在食品、医药等领域的用途基础上,系统梳理了用于包埋不饱和脂肪酸的微胶囊技术的研究进展,以期为相关食品的研究提供理论基础和依据。研究表明以蛋白质类和碳水化合物类为主的复合壁材是目前应用较广的壁材,将两者复配亦可避免单一壁材产生的弊端;喷雾干燥、冷冻干燥、分子包埋和凝聚法是常见的微胶囊方法。不同壁材种类和制备方法对不饱和脂肪酸的包埋率差异很大,更会影响其在加工和贮藏过程中的稳定性,研究者需根据产品性质与功能选择合适的材料与方法。微胶囊化的不饱和脂肪酸具备缓释性能,并显著提升了生理功能特性,因此在未来的食品工业中有较好的应用和发展前景。  相似文献   

13.
刘楠楠 《中国调味品》2012,37(9):110-113
文章以明胶、阿拉伯胶为壁材,采用复合凝聚法对葱油香精进行包埋,以微胶囊包埋率为评价指标,采用响应面分析法优化了影响包埋率的主要因素:壁材浓度、芯壁比和pH值。研究发现,复凝聚法制备葱油香精微胶囊的最佳工艺参数为:壁材浓度为1.82%、芯壁比1∶1.87、pH 4.16。在此基础上,采用喷雾干燥法可以制备出葱油香精微胶囊白色粉状产品,微胶囊粒径大小较为均一,体积平均粒径为65.54μm。  相似文献   

14.
微胶囊化不仅可以很好地保持红花籽油的风味、增强其氧化稳定性,还可以起到缓释的作用,更充分合理地体现物质的营养价值。以同种壁材配方制备微胶囊乳液,分别进行喷雾干燥和冷冻干燥,测定微胶囊的包埋率并观察其形态,从而选择较优的干燥方法,即喷雾干燥法。设计4种壁材配方以喷雾干燥法制备红花籽油微胶囊,测定包埋率及微胶囊总油含量。经60 d后测定包埋率、氧化程度及微胶囊总油含量,并以扫描电镜观察形态,确定包埋效果,选取最佳包埋壁材配方。以超声法进行均质,离心分离法测其乳化稳定性,用正交试验法确定最佳均质条件。结果表明:鲜蛋清、麦芽糊精1∶1为壁材配方制备的微胶囊形态最好,60 d后红花籽油包埋率、过氧化值分别为96.07%、4.48 mmol/kg;适宜工艺参数为芯壁比1∶4、超声功率200 W、超声时间10 min、超声温度40℃、进风温度190℃、出风温度60℃、载量300 m L/h。  相似文献   

15.
为提高鱼油稳定性,以青鱼内脏鱼油为芯材,大豆分离蛋白(SPI)和壳聚糖(CS)为壁材,制备鱼油微胶囊。采用单因素实验考察了均质速度、pH、壁材总质量分数、SPI/CS比值、芯壁比等因素对鱼油微胶囊制备效果的影响,结合响应面法优化鱼油微胶囊制备工艺,并比较研究了鱼油微胶囊湿囊分别经喷雾干燥和冷冻干燥两种干燥方法所得产品的包埋率、水分含量、贮藏稳定性。结果表明,最佳鱼油微胶囊制备工艺条件为:pH7、壁材总质量分数2%、SPI/CS比值1.3∶1、芯壁比1.3∶1,在此条件下鱼油包埋率为71.98%±0.16%。喷雾干燥法表面含油率为0.73%±0.04%,低于冷冻干燥法3.62%±0.09%,包埋率为71.98%±0.16%,高于冷冻干燥法56.76%±0.37%,说明喷雾干燥法效果优于冷冻干燥法,鱼油微胶囊贮藏期可较未包埋的鱼油延长6 d以上。通过微胶囊化,改善了青鱼内脏鱼油的性能,提高了使用范围和应用价值。  相似文献   

16.
奇亚籽油微胶囊的制备及表征   总被引:2,自引:0,他引:2  
为提高奇亚籽油的稳定性,对其进行微胶囊化。以包埋率为评价指标对冷冻干燥制备奇亚籽油微胶囊的工艺进行优化,利用激光粒度仪、扫描电镜、红外光谱仪和差示扫描量热仪(differential scanning calorimetry,DSC)等表征微胶囊性状。结果表明,微胶囊的最佳制备工艺为:壁材比(酪蛋白酸钠∶D-乳糖-水合物)1.1∶1(质量比)、固形物浓度31.32%、壁芯比2.34∶1(质量比),包埋率达到90.65%。所得微胶囊产品含有芯材、壁材的特征峰,表明形成奇亚籽油微胶囊的包埋结构。制得的奇亚籽油微胶囊呈不规则的几何形状和紧凑的结构,大小均匀,流动性较好,粉末表面光滑,黏度小,稳定性良好,可满足一般食品加工条件,为奇亚籽油微胶囊在食品工业中的应用提供参考。  相似文献   

17.
目的比较不同乳蛋白作为微胶囊壁材包埋共轭亚油酸的效果,并考察其产品的稳定性。方法分别以牛乳浓缩蛋白MPC80(milk protein concentrate,MPC)和乳清浓缩蛋白WPC80(whey protein concentrate,WPC)为高蛋白壁材,以多不饱和脂肪酸(共轭亚油酸,conjugated linoleic acid,CLA)为芯材,制备微胶囊产品。在芯壁比(芯材和壁材质量比)分别为1:4和1:8的比例下将壁材溶液(蛋白浓度为16%)和芯材混合、均质,经由喷雾干燥制备了共轭亚油酸微胶囊产品。通过扫描电子显微镜和气相色谱等检测方法对微胶囊产品的包埋率、表面形貌以及储藏过程中芯材的氧化稳定性进行研究。结果当芯壁比相同时(1:4和1:8,m:m),MPC组微胶囊的芯材包埋率总是低于WPC组;且MPC组微胶囊产品的表面凹陷程度和内壁疏松程度也更高。当芯壁比提高后,WPC和MPC组的微胶囊效率均有所上升。但是对不同芯壁比的微胶囊产品进行氧化稳定性检测后发现,加速储藏(45℃)过程中MPC组微胶囊产品的质量都比WPC组差。结论牛乳蛋白种类对牛乳蛋白作为CLA微胶囊壁材的影响较大。WPC是CLA微胶囊的优质壁材,而MPC虽然可以作为微胶囊壁材应用,但是对敏感芯材CLA的包埋效率和保护效果都存在一定的局限性,需要进一步改善以提高其应用性能。  相似文献   

18.
以玉米低聚肽和小麦低聚肽为壁材,维生素D3油为芯材,吐温-20为乳化剂,利用喷雾干燥法成功制备了2种低聚肽包埋维生素D3微胶囊,对比分析了两类微胶囊单因素条件差异原因,并利用正交试验法筛选出玉米肽微胶囊和小麦肽微胶囊的最佳制备条件均为喷雾干燥温度150℃、芯材壁材比1∶20、固形物质量浓度0.15 g/mL,包埋率分别为75.8%和73.8%。微胶囊稳定性分析表明,两类微胶囊均有较好的热稳定性、溶解性和胃环境缓释作用。  相似文献   

19.
通过制备洋葱皮黄酮微胶囊,以提高洋葱皮黄酮的稳定性。实验以β-环糊精为壁材,研究了分子包埋法制备微胶囊工艺中不同因素对微胶囊化包埋率的影响。结果表明:芯材与壁材的最佳配比为1∶11.49,搅拌时间60.6min,搅拌温度61℃。在此条件下,产品微胶囊化效率达到41.26%。  相似文献   

20.
为减缓海英菜籽油的氧化速度,提高稳定性,以酪蛋白、β-环糊精为壁材,采用微胶囊-喷雾干燥法制备海英菜籽油微胶囊。通过单因素试验,选择芯材含量、包埋时间、β-环糊精含量、单甘脂含量为影响因素,包埋率为响应值。通过响应面分析法确定海英菜籽油微胶囊化的最佳工艺参数:芯材含量18.3%、包埋时间50.7 min、β-环糊精含量41.1%、单甘脂含量50.4%,在该条件下海英菜籽油微胶囊包埋率为93.82%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号