首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The injection molding of reprocessed plastics with a preplastication plunger injection‐molding machine was investigated with a focus on the processing conditions. The process of the filling of the resin into the mold is much better controlled with preplastication than with processing in a conventional injection‐molding machine. Reprocessing of the resin leads to a reduction in molecular weight due to drastic changes in the resin morphology, thereby causing a reduction in melt viscosity. Direct experimental evidence for reduced viscosity was obtained from measurements of the filling pressure recorded on the machine and also with a melt‐flow indexer. The results of this study provide a practical solution for reducing the resin temperature when reprocessed resin is used in the injection molding of plastics. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1455–1461, 2001  相似文献   

2.
Online viscosity information on processing lines can reflect the material flow resistance and offer valuable guidance for manufacturing across various industries. Considering the accuracy, devices, and processes involved in injection molding, characterizing the melt's flow state during material processing poses a significant challenge. To reduce investment in viscometers, avoid influencing the components' surface aesthetics due to the installation of sensors, and make the flow state detect online in mold, this study designs a rheometric mold with cylindrical runners for identifying the in situ viscosity of molten resin during injection molding. The detection conditions of injection speed and cavity pressure variations, the entrance effect, and the viscous dissipation for Polycarbonate are analyzed under various conditions. The in situ viscosity is identified and compared with the standard cross-WLF model. The result shows that the melt velocity and cavity pressure variations during the filling process create a stable environment for in situ rheological characterization and the detected viscosity is related to the shear rate, melt temperature, and channel dimension in injection molding. The designed mold with cylindrical runners for determining the in situ thermal-rheological behavior of polymer is distinguished successfully and exhibits prospects for the development of low-cost, nondestructive, and inner-mold measurement in manufacturing applications.  相似文献   

3.
Recently, there has been growing interest in water-assisted injection molding (WAIM) not only for its advantages over gas-assisted molding (GAIM) and conventional injection molding (CIM), but also for its great potential advantages in industrial applications. To understand the formation mechanism of water penetration induced fiber orientation in overflow water-assisted injection molding (OWAIM) parts of short glass fiber-reinforced polypropylene (SGF/PP), in this work, the external fields and water penetration process within the mold cavity were investigated by experiments and numerical simulations. The results showed that the difference of fiber orientation distribution in thickness direction between WAIM moldings and CIM moldings was mainly ascribed to the great external fields generated by water penetration. Besides, fiber orientation depended on the position both across the part thickness and along the flow direction. Especially in the radial direction, fiber orientation varied considerably. The results also showed that the melt temperature is the principal parameter affecting the fiber orientation along the flow direction, and a higher melt temperature significantly facilitated more fibers to be oriented along the flow direction, which is quite different from the results as previously reported in short-shot water-assisted injection molding (SSWAIM). A higher water pressure, shorter water injection delay time, and higher melt temperature significantly induced more fibers to be orderly oriented in OWAIM moldings, which may improve their mechanical performances and broaden their application scope.  相似文献   

4.
Crystallization kinetics of short glass and carbon fiber composites of poly(ether ether ketone) (PEEK) under melt-strain conditions have been obtained for the first time, using in-situ wide angle X-ray scattering, and have been correlated to a model based on the Avrami equation in order to enable minimization of the processing time for injection molding of these materials. It has been demonstrated that increased flow rate of the melt in the mold and, consequently, increased shear rate accelerates the crystallization process of PEEK composites, analogous to similar trends observed previously in PEEK resin. Short glass fiber composites of PEEK crystallize slower than the resin under identical processing conditions, while short carbon fiber composites crystallize faster than the resin, except at the highest mold temperatures and the lowest flow rates. A model based on the Avrami equation has been proposed to fit the kinetics data obtained experimentally. The Avrami coefficient has been calculated and Arrhenius plots have been used to predict the crystallization kinetics at temperatures lower than those at which experimental data have been obtained here. Fiber orientation, flexural elastic modulus, and flexural fracture toughness of the composites have also been evaluated.  相似文献   

5.
An experimental study of sandwich injection molding is reported which involves sequential injection of polymer melts with differing melt viscosity into a mold. In isothermal injection molding the relative viscosity of the two melts is the primary variable determining the phase distribution in the mold. Generally the most uniform skin-core structure occurs when the second melt entering the mold has a slightly higher viscosity than the first melt injected. Large viscosity inequalities lead to nonuniform skin thicknesses. The influence of blowing agents and non-uniform temperature fields on the extent of encapsulation is described. Temperature fields are very important especially if the first polymer melt injected has a greater activation energy of viscous flow (or a greater temperature dependence of the viscosity function).  相似文献   

6.
This study focuses on the insert-injection molding process. The thermoset composite inserts in this study were carbon fiber/epoxy(CF/Epoxy) prepreg sheets. The injected molded part was glass fiber contained phenolic resin(GF/PF). The CF/Epoxy was placed in the mold cavity prior to injecting GF/PF onto the inserted injection molded CF/Epoxy specimens. The role of adhesion between the inserted part and injected resin on the mechanical properties was evaluated by 3 point bending and impact tests. In addition, the effect of prepreg orientation on the mechanical properties of the prepreg inserted-injection molding system was investigated. It was found that the prepreg with unidirectional orientation significantly improved flexural and impact strength of the inserted injection molding composites, providing better support and resistance to bending and impact loading. The main failure modes of the specimens were structural and adhesive failure.  相似文献   

7.
A bulk-molding compound made of unsaturated polyester resin, glass fiber, calcium carbonate fillers, and low profile additives is studied. The viscosity of the compound in the absence of cure reaction is measured by capillary rheometry. The compound exhibits a shear-thinning behavior. Injection molding in a rectangular plaque equipped with pressure transducers shows that the crosslinking reaction can begin during mold filling for low flow rate or high mold temperature. Fiber orientation in the plaque is complex as the reinforcement appears under two aspects, bundles or filaments. Their lengths and orientations are different. A layered structure throughout the thickness is observed at the mold entrance, whereas the orientation becomes progressively unidirectional in the plaque. Two fiber-free layers near the the mold walls are observed. A numerical simulation of mold filling assuming inelastic non-Newtonian kinetic dependent behavior is presented. The results agree well with pressure measurements. A simplified decoupled fiber motion calculation is finally proposed. A qualitative explanation of the basic phenomena which induce fiber orientation is presented.  相似文献   

8.
Polymers filled with conducting fibers to prevent electromagnetic interference (EMI) performance have recently received great attention due to the requirements of 3C (computer, communication, and consumer electronics) products. In the present article, the effect of fiber content and processing parameters, including melt temperature, mold temperature, and injection velocity, on the electromagnetic interference shielding effectiveness (SE) in injection molded ABS polymer composites filled with conductive stainless steel fiber (SSF) was investigated. The influence of fiber orientation and distribution resulting from fiber content and molding conditions on EMI performance was also examined. It was found from measured results that fiber content plays a significant role in influencing part EMI SE performance. SE value can reach the highest values of approximately 40 dB and 60 dB at 1000 MHz frequency for fiber content 7 wt % and 14 wt %, respectively, under the best choice of molding conditions. Higher melt and mold temperature would increase shielding effectiveness due to a more uniform and random fiber orientation. However, higher injection velocity leading to highly‐orientated and less uniform distribution of fiber reduces shielding effectiveness. Among all molding parameters, melt temperature affects SE performance most significantly. Its influence slightly decreases as fiber content increases. Injection speed plays a secondary importance in affecting SE values, and its influence increases as fiber content increases. Upon examination of fiber distribution via optical microscope and subsequent image analysis, it was found that the fiber becomes more densely and random distributed toward the last melt‐filled region, whereas fiber exhibits less concentration around the middle way of the flow path. This can be attributed to the combined effects of fountain flow, frozen layer thickness, and gapwise melt front velocity. The results indicate that molding conditions, instead of fiber content alone, are very important on the SE performance for injection molded SSF filled ABS composites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1072–1080, 2005  相似文献   

9.
Thermotropic liquid crystal polymers consist of rod-like molecules and are often called “self reinforcing thermoplastics.” Their rheological behaviors as well as orientation development during processing are often very similar to those of short fiber-filled composites. Without reinforcement, the polymer shows superior mechanical properties to conventional glass fiber-reinforced engineering resins. The orientation distribution in the crosssection as well as flow patterns in the molded thermotropic polymers are clearly visible to the naked eye due to color differences. This makes it particularly convenient to study the orientation distribution as well as the flow patterns of packing, back flow, jetting, flow instabilities, and weld line formation in injection molding. This paper discusses physical properties of a typical ther motropic polymer and their relationship to mold filling process in the injection molding.  相似文献   

10.
Mold articulation is introduced in this concept for resin transfer molding (RTM) to increase mold fill times and potentially allow for the use of high viscosity, hot melt resin systems, or thermoplastics. Following a brief review of conventional RTM and a discussion of the limitations on the factors that control fluid flow through porous media, the articulated concept is described. This is followed by an explanation of the sequence of motion of an articulated segmented mold necessary for consolidation, void removal and accelerated fluid flow through a fibrous preform. An analysis of the process using a fiber preform with orthotropic permeability is outlined from which mold fill time is obtained. This is compared with conventional RTM mold fill times using typical resin properties and fiber volume fractions. For the conservative assumptions used, an improvement by a factor of ten in mold fill time is achieved using the articulated process relative to conventional RTM.  相似文献   

11.
Reactive mold filling is one of the important stages in resin transfer molding processes, in which resin curing and edge effects are important characteristics. On the basis of previous work, volume‐averaging momentum equations involving viscous and inertia terms were adopted to describe the resin flow in fiber preform, and modified governing equations derived from the Navier–Stokes equations are introduced to describe the resin flow in the edge channel. A dual‐Arrhenius viscosity model is newly introduced to describe the chemorheological behavior of a modified bismaleimide resin. The influence of the curing reaction and processing parameters on the resin flow patterns was investigated. The results indicate that, under constant‐flow velocity conditions, the curing reaction caused an obvious increase in the injection pressure and its influencing degree was greater with increasing resin temperature or preform permeability. Both a small change in the resin viscosity and the alteration of the injection flow velocity hardly affected the resin flow front. However, the variation of the preform permeability caused an obvious shape change in the resin flow front. The simulated results were in agreement with the experimental results. This study was helpful for optimizing the reactive mold‐filling conditions. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Liang Fang 《Polymer》2009,50(24):5837-9753
Block copolymers are of increasing interest because of their nanometer-scale morphologies, which can be utilized in a range of applications, including nanolithography. Orientation of the domains can be controlled by part design and processing conditions in injection molding. In this work the surface morphology and alignment of block copolymers by mechanical flow fields from injection molding was investigated using a styrene-ethylene/butylene-styrene triblock copolymer (SEBS) and compared with the morphology induced by spin coating. Compared with the isotropic morphology found by spin coating and annealing, the surface domains were oriented in the flow direction. Increasing mold temperature and injection velocity enhanced the degree of orientation, whereas melt temperature had little effect. Smaller characteristic lengths were produced with higher mold temperatures and injection velocities.  相似文献   

13.
The performance of short fiber molded composite structures is determined uniquely by the properties of the molding material and the process induced fiber orientation. Consequently, the capability to accurately predict the fiber orientation distribution is of fundamental importance in computer-aided mold design. Methodology for the numerical prediction of fiber orientation during the mold-fill process is presented for a short glass fiber thermoset (57 percent phenolic resin, 10 percent calcium carbonate filler, and 33 percent glass fiber by volume). On the basis of a finite element flow characterization, Jeffery's orientation equation is numerically integrated along streamlines to calculate fiber orientation. Correlation of experimental and numerical results for an end-gated bar with a molded-in hole is reasonably good.  相似文献   

14.
Liquid composite molding (LCM) processes such as resin transfer molding and structural reaction injection molding are considered to be high potential processes for the mass production of composite parts. The resin injection step in LCM consists of two simultaneous flows: bulk mold filling and tow wetting. This complexity often results in the entrapment of air in the composite part, which is known to result in degradation of part performance, In this work, systematic investigation of the resin flow behavior through various types of glass fiber reinforcements is carried out by flow visualization. The objective is to relate the fiber mat architecture to the micro scale flow pattern and void formation, movement, and removal. An optical image analysis and processing technique is developed to help quantify void formation. Void formation is related to liquid properties and fiber-liquid contact angle. Although the focus of the study is LCM, the results can be directly applied to other composite manufacturing processes that involve advancement of resin in a dry fiber reinforcement.  相似文献   

15.
The Gate‐Magnetization method developed by Yokoi and coworkers for thermoplastics was used to investigate the flow behavior of glass‐fiber reinforced phenolic resin compound inside a mold cavity. Plug flow builds up in the cavity with a decrease of the local viscosity along the cavity wall due to the heat transfer from the wall and shear heating. Simultaneously, a high viscosity layer builds up from the crosslinking reaction along the cavity wall. The thickness of the high viscosity layer increased as the injection rate decreased. An unstable flow boundary formed between the reacted high viscosity layer along the wall and the low viscosity layer just under the layer.  相似文献   

16.
The high melt viscosity of thermoplastics is the main issue when producing continuously reinforced thermoplastic composites. For this reason, production methods for thermoplastic and thermoset composites differ substantially. Lowering the viscosity of thermoplastics to a value below 1 Pa.s enables the use of thermoset production methods such as resin transfer molding (RTM). In order to achieve these low viscosities, a low viscous mixture of prepolymers and catalyst can be infused into a mold where the polymerization reaction takes place. Only a limited number of polymerization reactions are compatible with a closed mold process. These polymerization reactions proceed rapidly compared to the curing reaction of thermosets used in RTM. Therefore, the processing window is narrow, and managing the processing parameters is crucial. This paper describes the production and properties of a glass fiber reinforced polyester produced from cyclic oligoesters. POLYM. COMPOS., 26:60–65, 2005. © 2004 Society of Plastics Engineers  相似文献   

17.
The development of fiber orientation in injection molding was manipulated by a special molding tool, the RCEM mold, which imposes a rotation action by one of the cavity surfaces during the filling stage. Center‐gated disc moldings were produced from glass fiber reinforced polypropylene with different cavity rotation velocities, inducing distinct distributions and levels of fiber orientation. The morphologies of the moldings were characterized by optical and electronic microscopy. The through‐thickness profiles of fiber orientation were assessed by means of the orientation tensor, and the relationship between the processing thermo‐mechanical environment and the fiber orientation was established. At high rotation velocities, the resulting fiber orientation pattern is mainly controlled by the rotational motion, inducing a much more homogeneous through‐the‐thickness fiber orientation distribution, with a preferential alignment on the circumferential direction. POLYM. ENG. SCI., 2008. © 2007 Society of Plastics Engineers  相似文献   

18.
High speed injection has been widely used in resin transfer molding (RTM), which improves manufacturing efficiency. This sometimes leads to excessive pressure within the mold, resulting in fiber destruction and mold deformation. Heating the mold and injection resin reduces the viscosity of resin, leading to influence on mold internal pressure. Selection of optimal mold and injection temperature for effective reduction of mold internal pressure has become a source of concern in the polymer industry. This article presents an outlook relationship between mold temperature, injection temperature, and mold internal pressure. It also showcases a temperature selection method angle to addressing this issue. The “FLUENT” software has been secondarily developed that gives an insight in using the three-dimensional nonisothermal RTM simulation. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47492.  相似文献   

19.
Ke Wang  Daiguo Zhao  Rongni Du  Xia Dong 《Polymer》2006,47(25):8374-8379
The transcrystal plays an important role in the enhancement of mechanical and thermal performances for polymer/glass fiber composites. Shear has been found to be a very effective way for the formation of transcrystal. Our purpose of this study was to explore the possibility to obtain the transcrystal in real processing such as injection molding. We will report our recent efforts on exploring the development of microstructure of polypropylene (PP)/glass fiber composite from skin to core in the injection-molded bars obtained by so-called dynamic packing injection molding which imposed oscillatory shear on the melt during solidification stage. A clear-cut shear-facilitated transcrystallization of PP on glass fibers was observed in the injection-molding bar for the first time. We suggested that shear could facilitate the transcrystalline growth through significantly improving the fiber orientation and the interfacial adhesion between fiber and matrix.  相似文献   

20.
In injection molding, high pressure is required to completely replicate the mold geometry, due to the viscosity of thermoplastic polymers, the reduced thickness of the cavity, and the low mold temperature. The reduction of the drag required to fill a thin‐wall injection molding cavity can be promoted by inducing the strong slip of the polymer melt over the mold surface, which occurs within the first monolayer of macromolecules adsorbed at the wall. In this work, the effects of different laser‐induced periodic surface structures (LIPSS) topographies on the reduction of the melt flow resistance of polypropylene were characterized. Ultrafast laser processing of the mold surface was used to manufacture nano‐scale ripples with different orientation and morphology. Moreover, the effects of those injection molding parameters that mostly affect the interaction between the mold surface and the molten polymer were evaluated. The effect of LIPSS on the slip of the polymer melt was modeled to understand the effect of the different treatments on the pressure required to fill the thin‐wall cavity. The results show that LIPPS can be used to treat injection mold surfaces to promote the onset of wall slip, thus reducing the injection pressure up to 13%. POLYM. ENG. SCI., 59:1889–1896, 2019. © 2019 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号