共查询到20条相似文献,搜索用时 62 毫秒
1.
陈雪 《电信工程技术与标准化》2022,(8):88-92
网络入侵检测是网络安全领域的重要课题,传统的机器学习检测算法以特征提取和特征分离为基础,存在检测能力不足和误报率高等问题。本文提出一种基于深度学习的网络入侵检测模型IDNet。其综合考虑流量数据中的空间特征和时间特征。首先使用卷积神经网络(CNN)提取流量数据的空间特征,然后通过递归神经网络(RNN)提取流量数据的时间特征,通过堆叠CNN+RNN模块,并逐步增加学习粒度,达到同时有效提取空间特征和时间特征的目的。试验结果表明,所提算法检测准确率和误报率均优于传统机器学习算法。 相似文献
2.
3.
针对如何将深度学习应用到网络入侵检测中以提高入侵检测准确率的问题,结合网络数据的特点给出一种深度学习网络的设计方法,并在此基础上提出一种基于深度学习的入侵检测方法。该方法采用了深度学习中的自编码网络模型实现对网络特征的提取,通过softmax分类器对特征数据进行分类,从而得到网络入侵检测分析的结果。基于KDD99数据库实验证明,该方法在保证高检测率的同时,其误检率较其他算法低40%以上,从而验证了方法的有效性。 相似文献
4.
针对网络入侵检测模型泛化能力弱的问题,提出了一种基于权重丢弃的卷积化长短期记忆网络(WDConvLSTM)和梯度惩罚生成对抗网络(WGAN-GP)的入侵检测方法。在数据处理方面,对网络流量数据进行归一化和数值化后使用主成分分析法进行数据降维。在特征提取方面,利用所提WD-ConvLSTM挖掘出高维数据深层的空间特征。最后把挖掘出来的空间特征输入Softmax函数得到分类结果。为了缓解数据不平衡导致的过拟合问题,引入WGAN-GP对稀有类型数据进行过采样,进一步增强模型的泛化能力。在NSL-KDD数据集上对所提出的入侵检测方法进行了实验,结果表明,无论是与随机森林、支持向量机、贝叶斯等传统机器学习方法,还是与降噪自编码器、多尺度卷积神经网络等深度学习方法相比,所提出的方法在准确率、F1值上表现更好。 相似文献
5.
《电子技术与软件工程》2019,(13)
本文提出了基于深度学习的外物入侵检测方法。首先,利用单目摄像头收集录像视频,其次,人工把视频转换成一帧一帧的图像,分为无外物入侵和有外物入侵两种,并标注。最后,将数据集放入构建的卷积神经网络模型中训练学习。在数据集充足的情况下,通过大量实验表明:基于卷积神经网络的外物入侵检测方法的准确率能够达到99%,相对于原始的帧差法和光流法。有了很大的提升。 相似文献
6.
针对现有无线传感网络入侵检测准确率不高的问题,提出基于深度学习的无线传感网络入侵检测方法。先对入侵无线传感网络特征进行提取,然后基于深度学习对无线传感网络入侵目标的位置进行定位检测,在获得入侵目标位置后,对入侵信息进行检测,最后通过对各个节点的入侵检测,完成整个网络入侵检测过程。实验结果表明,文中设计的无线传感网络入侵检测方法的检测准确率较高,能满足无线传感网络入侵检测需求。 相似文献
8.
9.
万爱华 《卫星电视与宽带多媒体》2021,(1):86-88
随着互联网技术的快速发展和普及,网络攻击和威胁已经渗透到我们生活的方方面面,网络安全成为人们关注的焦点.在面对网络攻击的研究中,入侵检测作为保证网络安全的一道防线,起着至关重要的作用.针对当前入侵检测收集的各类数据集中存在的数据不平衡问题,提出了一种基于深度学习的平衡数据生成模型,利用数据生成模型生成平衡数据集,使用这... 相似文献
10.
11.
《Digital Communications & Networks》2021,7(3):453-460
Due to the increasing cyber-attacks, various Intrusion Detection Systems (IDSs) have been proposed to identify network anomalies. Most existing machine learning-based IDSs learn patterns from the features extracted from network traffic flows, and the deep learning-based approaches can learn data distribution features from the raw data to differentiate normal and anomalous network flows. Although having been used in the real world widely, the above methods are vulnerable to some types of attacks. In this paper, we propose a novel attack framework, Anti-Intrusion Detection AutoEncoder (AIDAE), to generate features to disable the IDS. In the proposed framework, an encoder transforms features into a latent space, and multiple decoders reconstruct the continuous and discrete features, respectively. Additionally, a generative adversarial network is used to learn the flexible prior distribution of the latent space. The correlation between continuous and discrete features can be kept by using the proposed training scheme. Experiments conducted on NSL-KDD, UNSW-NB15, and CICIDS2017 datasets show that the generated features indeed degrade the detection performance of existing IDSs dramatically. 相似文献
12.
Video anomaly detection is usually studied by considering the spatial and temporal contexts. This paper focuses first on spatial context and shows that it can be a fast real-time solution. In the first part of this work there are two main contributions: employing a new deep network for reconstruction and introducing a new regularity scoring function. The new deep architecture is based on pyramid of input images and compared to UNet, the proposed architecture boosts AUC by 15% and the new regularity scoring function is based on SSIM. The second part employs a multiframe approach to distinguish temporal behavior anomalies. The second approach enhances the results by 7% compared to spatial anomaly detection. Comparing the two approaches, if computing power is limited and real time anomaly detection is looked for, single frame detection is preferred while multi frame analysis offers a much wider possibility of anomaly detection. 相似文献
13.
14.
15.
异常数据是指偏离大量正常数据点的数据,往往会对各类系统产生负面影响,存在较大风险。异常检测作为一种有效的防护手段,能够检测数据中的异常,为各类系统的正常运转提供重要支撑,具有重要的现实意义。提出了一种基于混合高斯变分自编码网络的异常检测算法,该算法首先使用混合高斯先验构建变分自编码器,对输入数据进行特征提取,然后以混合高斯变分自编码器构建深度支持向量网络,压缩特征空间,并寻找最小超球体分离正常数据和异常数据,通过计算数据特征到超球体中心的欧氏距离衡量数据的异常分数,并以此进行异常检测。最后在基准数据集MNIST和Fashion-MNIST上评估了该算法,平均AUC分别达到了0.954和0.937。实验结果表明,所提出的算法取得了较好的异常检测效果。 相似文献
16.
Camera-based transmission line detection (TLD) is a fundamental and crucial task for automatically patrolling powerlines by aircraft. Motivated by instance segmentation, a TLD algorithm is proposed in this paper with a novel deep neural network, i.e., CableNet. The network structure is designed based on fully convolutional networks (FCNs) with two major improvements, considering the specific appearance characteristics of transmission lines. First, overlaying dilated convolutional layers and spatial convolutional layers are configured to better represent continuous long and thin cable shapes. Second, two branches of outputs are arranged to generate multidimensional feature maps for instance segmentation. Thus, cable pixels can be detected and assigned cable IDs simultaneously. Multiple experiments are conducted on aerial images, and the results show that the proposed algorithm obtains reliable detection performance and is superior to traditional TLD methods. Meanwhile, segmented pixels can be accurately identified as cable instances, contributing to line fitting for further applications. 相似文献
17.
针对数据集样本数量较少会影响深度学习检测效果的问题,提出了一种基于改进生成对抗网络和MobileNetV3的带钢缺陷分类方法.首先,引入生成对抗网络并对生成器和判别器进行改进,解决了类别错乱问题并实现了带钢缺陷数据集的扩充.然后,对轻量级图像分类网络MobileNetV3进行改进.最后,在扩充后的数据集上训练,实现了带... 相似文献
18.
鉴于大多数现有端到端自编码器(AE)仅适用于点对点的通信场景,提出一种基于AE的动态协作通信系统,将基于深度学习的AE扩展到多点通信系统。构建了3个神经网络子系统,分别用于学习发送端、中继节点和接收端的最佳编码、传输和解码,通过三者的联合训练达到多点通信系统的最佳传输性能。其中,发送端和接收端使用一维卷积层进行信号特征的提取及学习,中继节点通过引入密集层和一维卷积层,支持放大转发(AF)和解码转发(DF)两种经典的中继协作方式。仿真实验表明,在加性高斯白噪声以及瑞利衰落信道条件下,提出的模型采用两种不同的协作方式,其误码性能均优于单一点到点通信系统,验证了系统方案的可行性和有效性。此外,该系统支持动态的节点拓扑结构,在无需额外训练的条件下,本系统支持中继节点数量实时变化。 相似文献
19.
卷积神经网络在入侵检测技术领域中已得到广泛应用,一般地认为层次越深的网络结构其在特征提取、检测准确率等方面就越精确。但也伴随着梯度弥散、泛化能力不足且参数量大准确率不高等问题。针对上述问题,该文提出将密集连接卷积神经网络(DCCNet)应用到入侵检测技术中,并通过使用混合损失函数达到提升检测准确率的目的。用KDD 99数据集进行实验,将实验结果与常用的LeNet神经网络、VggNet神经网络结构相比。分析显示在检测的准确率上有一定的提高,而且缓解了在训练过程中梯度弥散问题。 相似文献
20.
Object detection across different scales is challenging as the variances of object scales. Thus, a novel detection network, Top-Down Feature Fusion Single Shot MultiBox Detector (TDFSSD), is proposed. The proposed network is based on Single Shot MultiBox Detector (SSD) using VGG-16 as backbone with a novel, simple yet efficient feature fusion module, namely, the Top-Down Feature Fusion Module. The proposed module fuses features from higher-level features, containing semantic information, to lower-level features, containing boundary information, iteratively. Extensive experiments have been conducted on PASCAL VOC2007, PASCAL VOC2012, and MS COCO datasets to demonstrate the efficiency of the proposed method. The proposed TDFSSD network is trained end to end and outperforms the state-of-the-art methods across the three datasets. The TDFSSD network achieves 81.7% and 80.1% mAPs on VOC2007 and 2012 respectively, which outperforms the reported best results of both one-stage and two-stage frameworks. In the meantime, it achieves 33.4% mAP on MS COCO test-dev, especially 17.2% average precision (AP) on small objects. Thus all the results show the efficiency of the proposed method on object detection. Code and model are available at: https://github.com/dongfengxijian/TDFSSD. 相似文献