首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
针对真实世界图像去噪算法存在对上下文信息和全局信息利用不足导致的去噪效果不佳问题,提出一种U形金字塔注意力网络(UPCA)。U形结构由多尺度特征模块与长距离通道注意力模块融合形成的金字塔注意力模块组成,U形结构通过拼接操作可以将每一层的输出特征图融合,减少卷积过程以及下采样过程中图像细节特征的丢失。多尺度特征金字塔模块可以更好地利用上下文信息从而更好地恢复出干净的图像,而建立长距离依赖的通道注意力模块可以更好地利用全局信息,提高网络的去噪效果。同时在损失函数部分加入噪声项来加快训练时收敛的速度以及提高去噪效果。UPCA网络在数据集SIDD和DND进行对比实验,验证了UPCA网络的可行性和先进性,同时与同样使用通道注意力的RIDNet相比UPCA网络的PSNR/SSIM指标提升了0.81 dB/0.044,去噪后的效果图直观表现也更好,而且同等参数下训练所需的算力更小。  相似文献   

2.
目的 针对以往基于深度学习的图像超分辨率重建方法单纯加深网络、上采样信息损失和高频信息重建困难等问题,提出一种基于多尺度特征复用混合注意力网络模型用于图像的超分辨率重建。方法 网络主要由预处理模块、多尺度特征复用混合注意力模块、上采样模块、补偿重建模块和重建模块5部分组成。第1部分是预处理模块,该模块使用一个卷积层来提取浅层特征和扩张特征图的通道数。第2部分是多尺度特征复用混合注意力模块,该模块加入了多路网路、混合注意力机制和长短跳连接,以此来进一步扩大特征图的感受野、提高多尺度特征的复用和加强高频信息的重建。第3部分是上采样模块,该模块使用亚像素方法将特征图上采样到目标图像尺寸。第4部分是补偿重建模块,该模块由卷积层和混合注意力机制组成,用来对经过上采样的特征图进行特征补偿和稳定模型训练。第5部分是重建模块,该模块由一个卷积层组成,用来将特征图的通道数恢复至原来数量,以此得到重建后的高分辨率图像。结果 在同等规模模型的比较中,以峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似度(structural similarity index measure,SSIM)作为评价指标来评价算法性能,在Set5、Set14、BSD100(Berkeley segmentation dataset)和Urban100的基准测试集上进行测试。当缩放尺度因子为3时,各测试集上的PSNR/SSIM依次为34.40 dB/0.927 3,30.35 dB/0.842 7,29.11 dB/0.805 2和28.23 dB/0.854 0,相比其他模型有一定提升。结论 量化和视觉的实验结果表明,本文模型重建得到的高分辨率图像不仅在重建边缘和纹理信息有很好的改善,而且在PSNR和SSIM客观评价指标上也有一定的提高。  相似文献   

3.
针对实际应用中所采集的部分图像对比度低、边缘细节模糊的问题,提出一种基于非下采样Contourlet变换NSCT(Nonsubsampled Contourlet Transform)的多尺度Retinex与非线性增益函数相结合的图像增强算法。使用改进的多尺度Retinex算法对低频子带系数进行处理,以提升图像的灰度动态范围并改善图像的亮度均匀性;采用非线性增益函数和贝叶斯萎缩阈值相结合的方法对各个高频子带系数进行处理,在提升图像纹理细节的同时抑制噪声。实验结果表明:该算法能够有效提升图像对比度和清晰度,增强图像细节信息,有效改善视觉效果。  相似文献   

4.
樊帆  高媛  秦品乐  王丽芳 《计算机应用》2020,40(12):3624-3630
为了有效解决腹部磁共振成像(MRI)影像在超分辨率重建过程中因高频细节丢失引起的边界不明显、腹部器官显示不清晰以及单模型单尺度重建应用不方便等问题,提出了一种基于并行通道-空间注意力机制的多尺度超分辨率重建算法。首先,构造了并行通道-空间注意力残差块,通过空间注意力模块获取图像重点区域与高频信息的相关性,通过通道注意力模块获取图像各通道对关键信息响应程度的权重,同时拓宽网络的特征提取层以增加流入注意力模块的特征信息;此外,添加了权重归一化层,保证了网络的训练效率;最后,在网络末端应用多尺度上采样层,增加了网络的灵活性和可用性。实验结果表明,相较深层残差通道注意力超分辨率网络(RCAN),所提算法在×2、×3、×4尺度下的峰值信噪比(PSNR)平均提高了0.68 dB。所提算法有效提升了图像的重建质量。  相似文献   

5.
樊帆  高媛  秦品乐  王丽芳 《计算机应用》2005,40(12):3624-3630
为了有效解决腹部磁共振成像(MRI)影像在超分辨率重建过程中因高频细节丢失引起的边界不明显、腹部器官显示不清晰以及单模型单尺度重建应用不方便等问题,提出了一种基于并行通道-空间注意力机制的多尺度超分辨率重建算法。首先,构造了并行通道-空间注意力残差块,通过空间注意力模块获取图像重点区域与高频信息的相关性,通过通道注意力模块获取图像各通道对关键信息响应程度的权重,同时拓宽网络的特征提取层以增加流入注意力模块的特征信息;此外,添加了权重归一化层,保证了网络的训练效率;最后,在网络末端应用多尺度上采样层,增加了网络的灵活性和可用性。实验结果表明,相较深层残差通道注意力超分辨率网络(RCAN),所提算法在×2、×3、×4尺度下的峰值信噪比(PSNR)平均提高了0.68 dB。所提算法有效提升了图像的重建质量。  相似文献   

6.
基于离散平稳小波和非下采样方向滤波器组的纹理分类   总被引:1,自引:0,他引:1  
结合小波变换的多尺度性和Contourlet变换的多方向性,提出了一种新的基于离散平稳小波变换和无下采样方向滤波器组(stationary wavelet transform and nonsubsampled directional filter banks,SWT-NSDFB)的纹理分类方法,采用具有平移不变性的离散平稳小波先进行多尺度分解;然后对每层分解得到的高频子带采用非下采样方向滤波器组进行多方向分解,再计算低频子带和各层方向子带的能量作为纹理特征;最后用支持向量机实现纹理分类。实验结果表明,该  相似文献   

7.
目前基于深度学习的图像去噪算法无法综合考虑局部和全局的特征信息, 进而影响细节处的图像去噪效果, 针对该问题, 提出了融合CNN和Transformer的图像去噪网络(hybrid CNN and Transformer image denoising network, HCT-Net). 首先, 提出CNN和Transformer耦合模块(CNN and Transformer coupling block, CTB), 构造融合卷积和通道自注意力的双分支结构, 缓解单纯依赖Transformer造成的高额计算开销, 同时动态分配注意力权重使网络关注重要图像特征. 其次, 设计自注意力增强卷积模块(self-attention enhanced convolution module, SAConv), 采用递进式组合模块和非线性变换, 减弱噪声信号干扰, 提升在复杂噪声水平下识别局部特征的能力. 在6个基准数据集上的实验结果表明, HCT-Net相比当前一些先进的去噪方法具有更好的特征感知能力, 能够抑制高频的噪声信号从而恢复图像的边缘和细节信息.  相似文献   

8.
为进一步提取丰富的图像边缘信息,提出了一种基于非下采样Contourlet变换(Nonsubsampled Contourlet Transform,NSCT)及改进Canny的图像边缘检测方法。该方法是将图像进行NSCT多尺度分解,得到低频和高频子带。首先对低频子带使用改进Canny算子提取低频轮廓,再使用非线性函数对高频子带信息中各尺度各方向上的系数进行调整,实现边缘增强和噪声抑制,最后将NSCT域尺度内和尺度间的检测结果相融合来得到完整的边缘图像。实验结果表明,相比Sobel、Canny算子和现有的NSCT边缘检测方法,文中方法具有更好的边缘检测效果,边缘定位准确、完整、连续、细节丰富。  相似文献   

9.
针对合成孔径雷达(Synthetic Aperture Radar,SAR)图像受到相干斑噪声的干扰,严重影响了SAR图像的后续处理的问题,提出一种在非下采样轮廓变换(Nonsubsampled Contourlet Transform,NSCT)域将中值滤波和邻域收缩法相结合的SAR图像去噪算法。该算法对原始SAR图像进行NSCT分解,得到低频子带和高频子带图像,对低频子带使用中值滤波处理以去除低频子带中的低频噪声,利用NSCT分解系数之间的相关性,使用邻域收缩法对子带图的系数进行收缩,以消除高频子带中的高频噪声。实验证明,该算法与小波域邻域收缩去噪算法和NSCT硬阈值去噪算法相比,在去噪性能和视觉效果方面均有所提高,在消除噪声同时可以较好地保护纹理细节信息。  相似文献   

10.
《微型机与应用》2018,(1):111-114
为了有效地解决航空图像在雾霾等恶劣天气下存在边缘和细节丢失、对比度低的问题,提出了一种结合非下采样Contourlet域和能量特征的引导滤波航空图像增强算法。该算法首先将低质的航空图像进行非下采样Contourlet变换(NSCT),得到一个低频子带和多个高频子带;之后对低频子带线性拉伸以提高对比度,高频部分先采用基于能量特征改进的自适应Bayes阈值进行噪声抑制,再进行引导滤波增强,以提升和优化边缘信息的保持能力;最后将图像进行NSCT反变换,得到最终的增强效果图。大量实验结果表明,该算法能较好地增强图像边缘细节信息,明显提升图像的整体观感,并具有一定的抗噪能力。  相似文献   

11.
鲁甜  刘蓉  刘明  冯杨 《计算机工程》2021,47(3):261-268
图像超分辨率重建中的高频分量通常包含较多轮廓、纹理等细节信息,为更好地处理特征图中的高频分量与低频分量,实现自适应调整信道特征,提出一种基于特征图注意力机制的图像超分辨重建网络模型。利用特征提取块提取原始低分辨率图像中的特征信息,基于多个结合特征图注意力机制的信息提取块,通过特征信道之间的相互依赖性自适应调整信道特征,以恢复更多细节信息。在此基础上利用重建模块重建出不同尺度的高分辨率图像。在Set5数据集上的实验结果表明,与基于双三次插值的重建模型相比,该模型能够有效提升图像的视觉效果,且峰值信噪比与结构相似度分别提高了3.92 dB和0.056。  相似文献   

12.
传统小波阈值去噪在对图像进行去噪时,并不能很好地保留图像的细节纹理等边缘信息部分.针对这一不足,结合了稀疏表示相关的理论,提出了一种基于小波变换和正交匹配算法相结合的图像去噪算法.首先选取小波函数对含噪图像进行处理,分离出图像的高频和低频小波系数,然后对高频系数结合正交匹配追踪算法,通过多次反复迭代求得高频稀疏分量,再结合低频分量,用逆小波变换得到恢复图像.实验结果表明,在相同的噪声条件下,该算法能取得较好的峰值信噪比(PSNR),获得更好的视觉效果.  相似文献   

13.
小波域中双稀疏的单幅图像超分辨   总被引:1,自引:1,他引:0       下载免费PDF全文
目的 过去几年,基于稀疏表示的单幅图像超分辨获得了广泛的研究,提出了一种小波域中双稀疏的图像超分辨方法。方法 由小波域中高频图像的稀疏性及高频图像块在空间冗余字典下表示系数的稀疏性,建立了双稀疏的超分辨模型,恢复出高分辨率图像的细节系数;然后利用小波的多尺度性及低分辨率图像可作为高分辨率图像低频系数的逼近的假设,超分辨图像由低分辨率图像的小波分解和估计的高分辨率图像的高频系数经过二层逆小波变换来重构。结果 通过大量的实验发现,双稀疏的方法不仅较好地恢复了图像的局部纹理与边缘,且在噪声图像的超分辨上也获得了不错的效果。结论 与现在流行的使用稀疏表示的超分辨方法相比,双稀疏的方法对噪声图像的超分辨效果更好,且计算复杂度减小。  相似文献   

14.
苏俊英 《遥感信息》2012,27(3):15-19,59
提出了一种基于高光谱曲线小波分形测度的高光谱影像多尺度分形维特征分析方法。对高光谱影像的光谱响应曲线的小波域高频和低频系数统计特性、分形特征进行了分析,提出以小波低频分形维表征原始光谱曲线分形特征,以小波系数高频分形维表征高光谱细节特征方法,设计了基于高光谱曲线小波分形维的多尺度特征计算算法,实验结果表明,小波分形维值可有效表征丰富的光谱特征,可用于高光谱影像特征提取和分类。  相似文献   

15.
针对现有的图像修复算法重建结果存在的局部结构不连通、细节还原不准确等问题,提出了一种基于语义先验和双通道特征提取的图像修复算法(semantic prior and dual channel extraction,SPDCE)。该算法利用语义先验网络学习缺失区域的语义信息和上下文知识,对缺失区域进行预测,增强了生成图像的局部一致性;然后通过双通道特征提取网络充分挖掘图像信息,提升了对纹理细节的感知和利用能力;再使用上下文特征调整模块在多个尺度上捕获并编码丰富的语义特征,从而生成更真实的图像视图和更精细的纹理细节。在CelebA-HQ和Places2数据集上进行实验验证,结果表明,SPDCE算法与常用算法相比,峰值信号比(peak signal-to-noise ratio,PSNR)和结构相似性(structural similarity,SSIM)分别提升1.6~1.73 dB和3.1%~9.9%,L1 loss下降15.2%~27.8%。实验证明所提算法修复后的图像具有更合理的结构和更丰富的细节,图像修复效果更优。  相似文献   

16.
李昌顺  杨浩  裴蕾 《计算机工程》2012,38(1):211-214
为进一步提高图像质量,提出一种基于高密度离散小波变换的改进图像降噪方法。给出二维高密度离散小波变换的分解与重构快速算法,通过该算法对图像进行多尺度分解,利用相邻尺度小波系数相关性对各层小波系数进行双变量收缩阈值处理,重构降噪后的图像。实验结果表明,与其他常用小波降噪方法相比,该方法能进一步提高图像降噪效果,且在降噪过程中较好地保留图像细节。  相似文献   

17.
针对深度学习图像去噪算法存在网络过深导致细节丢失的问题,提出一种双通道扩张卷积注意力网络CEANet。拼接信息保留模块将每一层的输出特征图融合,弥补卷积过程中丢失的图像细节特征进行密集学习;扩张卷积可以在去噪性能和效率之间进行权衡,用更少的参数获取更多的信息,增强模型对噪声图像的表示能力,基于扩张卷积的稀疏模块通过扩大感受野获得重要的结构信息和边缘特征,恢复复杂噪声图像的细节;基于注意力机制的特征增强模块通过全局特征和局部特征进行融合,进一步指导网络去噪。实验结果表明,在高斯白噪声等级为25和50时,CEANet都获得了较高的峰值信噪比均值和结构相似性均值,能够更高效地捕获图像细节信息,在边缘保持和噪声抑制方面,具有较好的性能。相关实验证明了该算法进行图像去噪的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号