共查询到18条相似文献,搜索用时 93 毫秒
1.
2.
模态是指人接收信息的方式,包括听觉、视觉、嗅觉、触觉等多种方式。多模态学习是指通过利用多模态之间的互补性,剔除模态间的冗余性,从而学习到更好的特征表示。多模态学习的目的是建立能够处理和关联来自多种模式信息的模型,它是一个充满活力的多学科领域,具有日益重要和巨大的潜力。目前比较热门的研究方向是图像、视频、音频、文本之间的多模态学习。着重介绍了多模态在视听语音识别、图文情感分析、协同标注等实际层面的应用,以及在匹配和分类、对齐表示学习等核心层面的应用,并针对多模态学习的核心问题:匹配和分类、对齐表示学习方面给出了说明。对多模态学习中常用的数据集进行了介绍,并展望了未来多模态学习的发展趋势。 相似文献
3.
在多模态深度学习发展前期总结当前多模态深度学习,发现在不同多模态组合和学习目标下,多模态深度学习实现过程中的共有问题,并对共有问题进行分类,叙述解决各类问题的方法。具体来说,从涉及自然语言、视觉、听觉的多模态学习中考虑了语言翻译、事件探测、信息描述、情绪识别、声音识别和合成以及多媒体检索等方面研究,将多模态深度学习实现过程中的共有问题分为模态表示、模态传译、模态融合和模态对齐四类,并对各类问题进行子分类和论述,同时列举了为解决各类问题产生的神经网络模型。最后论述了实际多模态系统、多模态深度学习研究中常用的数据集和评判标准,并展望了多模态深度学习的发展趋势。 相似文献
4.
尽管深度学习因为强大的非线性表示能力已广泛应用于许多领域,多源异构模态数据间结构和语义上的鸿沟严重阻碍了后续深度学习模型的应用。虽然已经有许多学者提出了大量的表示学习方法以探索不同模态间的相关性和互补性,并提高深度学习预测和泛化性能。然而,多模态表示学习研究还处于初级阶段,依然存在许多科学问题尚需解决。迄今为止,多模态表示学习仍缺乏统一的认知,多模态表示学习研究的体系结构和评价指标尚不完全明确。根据不同模态的特征结构、语义信息和表示能力,从表示融合和表示对齐两个角度研究和分析了深度多模态表示学习的进展,并对现有研究工作进行了系统的总结和科学的分类。同时,解析了代表性框架和模型的基本结构、应用场景和关键问题,分析了深度多模态表示学习的理论基础和最新发展,并且指出了多模态表示学习研究当前面临的挑战和今后的发展趋势,以进一步推动深度多模态表示学习的发展和应用。 相似文献
5.
目标跟踪是计算机视觉研究中的前沿和热点问题,在安全监控、无人驾驶等领域中有着重要的应用价值。然而,目前基于可见光数据的视觉跟踪方法,在光照变化、恶劣天气下因数据质量受限难以实现鲁棒跟踪。因此,一些研究者提出了多模态视觉跟踪任务,通过引入其他模态数据,包括红外模态、深度模态、事件模态以及文本模态,在一定程度上弥补了可见光模态在恶劣天气、遮挡、快速运动和外观歧义等条件下的不足。多模态视觉跟踪旨在挖掘可见光和其他模态数据的互补优势,在视频中实现鲁棒的目标定位,对全天时全天候感知有着重要的价值和意义,受到越来越多的研究和关注。由于主流的多模态视觉跟踪方法针对可见光—红外跟踪展开,因此,本文以阐述可见光—红外跟踪方法为主,从信息融合的角度将现有方法划分为结合式融合和判别式融合,分别进行了详细介绍和分析,并对不同类方法的优缺点进行了分析和比较。然后,本文对其他多模态视觉跟踪任务的研究工作进行了介绍,并对不同多模态视觉跟踪任务的优缺点进行了分析和比较。最后,本文对多模态视觉跟踪方法进行了总结并对未来发展进行展望。 相似文献
6.
7.
王乙儒 《电脑编程技巧与维护》2021,(12):34-36,51
多模态情感分析作为近年来的研究热点,比单模态情感分析具有更高的稳定性和准确率.介绍了多模态情感分析研究背景,分别对基于文本的、基于音频的和基于视频的单模态情感算法分析进行了阐述,又讲解了多模态的3种融合方法:特征级融合、决策级融合和混合融合以及相关算法,并分析了多模态情感分析存在的问题. 相似文献
8.
在综合对比传统知识图谱表示学习模型优缺点以及适用任务后,发现传统的单一模态知识图谱无法很好地表示知识。因此,如何利用文本、图片、视频、音频等多模态数据进行知识图谱表示学习成为一个重要的研究方向。同时,详细分析了常用的多模态知识图谱数据集,为相关研究人员提供数据支持。在此基础上,进一步讨论了文本、图片、视频、音频等多模态融合下的知识图谱表示学习模型,并对其中各种模型进行了总结和比较。最后,总结了多模态知识图谱表示学习如何改善经典应用,包括知识图谱补全、问答系统、多模态生成和推荐系统在实际应用中的效果,并对未来的研究工作进行了展望。 相似文献
9.
在疾病诊断过程当中通常会生成各种各样的医疗图像,利用计算机综合考虑来自不同模态的医疗图像来辅助诊断成了一个热门的研究方向.本方法利用深度神经网络获取不同模态的医疗图像的特征,通过设计损失函数的正则化项,使得这些特征在共同语义空间上保持结构上的相似性,来让网络学习到更加鲁棒的特征.本方法在CPM-RadPath2020和... 相似文献
10.
情感分析是指利用计算机自动分析确定人们所要表达的情感,其在人机交互和刑侦破案等领域都能发挥重大作用.深度学习和传统特征提取算法的进步为利用多种模态进行情感分析提供了条件.结合多种模态进行情感分析可以弥补单模态情感分析的不稳定性以及局限性等缺点,能够有效提高准确度.近年来,研究者多用面部表情信息、文本信息以及语音信息三种... 相似文献
11.
在多模态机器学习领域,为特定任务而制作的人工标注数据昂贵,且不同任务难以进行迁移,从而需要大量重新训练,导致训练多个任务时效率低下、资源浪费。预训练模型通过以自监督为代表的方式进行大规模数据训练,对数据集中不同模态的信息进行提取和融合,以学习其中蕴涵的通用知识表征,从而服务于广泛的相关下游视觉语言多模态任务,这一方法逐渐成为人工智能各领域的主流方法。依靠互联网所获取的大规模图文对与视频数据,以及以自监督学习为代表的预训练方法的进步,视觉语言多模态预训练模型在很大程度上打破了不同视觉语言任务之间的壁垒,提升了多个任务训练的效率并促进了具体任务的性能表现。本文总结视觉语言多模态预训练领域的进展,首先对常见的预训练数据集和预训练方法进行汇总,然后对目前最新方法以及经典方法进行系统概述,按输入来源分为图像—文本预训练模型和视频—文本多模态模型两大类,阐述了各方法之间的共性和差异,并将各模型在具体下游任务上的实验情况进行汇总。最后,总结了视觉语言预训练面临的挑战和未来发展趋势。 相似文献
12.
随着多媒体技术的发展,可获取的媒体数据在种类和量级上大幅提升。受人类感知方式的启发,多种媒体数据互相融合处理,促进了人工智能在计算机视觉领域的研究发展,在遥感图像解译、生物医学和深度估计等方面有广泛的应用。尽管多模态数据在描述事物特征时具有明显优势,但仍面临着较大的挑战。1)受到不同成像设备和传感器的限制,难以收集到大规模、高质量的多模态数据集;2)多模态数据需要匹配成对用于研究,任一模态的缺失都会造成可用数据的减少;3)图像、视频数据在处理和标注上需要耗费较多的时间和人力成本,这些问题使得目前本领域的技术尚待攻关。本文立足于数据受限条件下的多模态学习方法,根据样本数量、标注信息和样本质量等不同的维度,将计算机视觉领域中的多模态数据受限方法分为小样本学习、缺乏强监督标注信息、主动学习、数据去噪和数据增强5个方向,详细阐述了各类方法的样本特点和模型方法的最新进展。并介绍了数据受限前提下的多模态学习方法使用的数据集及其应用方向(包括人体姿态估计、行人重识别等),对比分析了现有算法的优缺点以及未来的发展方向,对该领域的发展具有积极的意义。 相似文献
13.
14.
为了解决多模态命名实体识别方法中存在的图文语义缺失、多模态表征语义不明确等问题,提出了一种图文语义增强的多模态命名实体识别方法。其中,利用多种预训练模型分别提取文本特征、字符特征、区域视觉特征、图像关键字和视觉标签,以全面描述图文数据的语义信息;采用Transformer和跨模态注意力机制,挖掘图文特征间的互补语义关系,以引导特征融合,从而生成语义补全的文本表征和语义增强的多模态表征;整合边界检测、实体类别检测和命名实体识别任务,构建了多任务标签解码器,该解码器能对输入特征进行细粒度语义解码,以提高预测特征的语义准确性;使用这个解码器对文本表征和多模态表征进行联合解码,以获得全局最优的预测标签。在Twitter-2015和Twitter-2017基准数据集的大量实验结果显示,该方法在平均F1值上分别提升了1.00%和1.41%,表明该模型具有较强的命名实体识别能力。 相似文献
15.
针对多模态生物特征识别系统并行融合模式中使用方便性和使用效率方面的问题,在现有序列化多模态生物特征识别系统的基础上,提出了一种结合并行融合和序列化融合的多生物特征识别系统框架。框架中首先采用步态、人脸与指纹三种生物特征的不同组合方式以加权相加的得分级融合算法进行的识别过程;其次,利用在线的半监督学习技术提高弱特征的识别性能,从而进一步增强系统的使用方便性和识别可靠性。理论分析和实验结果表明,在此框架下,随使用时间的推移,系统能够通过在线学习提高弱分类器的性能,用户的使用方便性和系统的识别精度都得到了进一步提升。 相似文献
16.
Many different direct volume rendering methods have been developed to visualize 3D scalar fields on uniform rectilinear grids. However, little work has been done on rendering simultaneously various properties of the same 3D region measured with different registration devices or at different instants of time. The demand for this type of visualization is rapidly increasing in scientific applications such as medicine in which the visual integration of multiple modalities allows a better comprehension of the anatomy and a perception of its relationships with activity. This paper presents different strategies of direct multimodal volume rendering (DMVR). It is restricted to voxel models with a known 3D rigid alignment transformation. The paper evaluates at which steps of the rendering pipeline the data fusion must be realized in order to accomplish the desired visual integration and to provide fast re‐renders when some fusion parameters are modified. In addition, it analyses how existing monomodal visualization algorithms can be extended to multiple datasets and it compares their efficiency and their computational cost. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
17.
目的 现有视觉问答方法通常只关注图像中的视觉物体,忽略了对图像中关键文本内容的理解,从而限制了图像内容理解的深度和精度。鉴于图像中隐含的文本信息对理解图像的重要性,学者提出了针对图像中场景文本理解的“场景文本视觉问答”任务以量化模型对场景文字的理解能力,并构建相应的基准评测数据集TextVQA(text visual question answering)和ST-VQA(scene text visual question answering)。本文聚焦场景文本视觉问答任务,针对现有基于自注意力模型的方法存在过拟合风险导致的性能瓶颈问题,提出一种融合知识表征的多模态Transformer的场景文本视觉问答方法,有效提升了模型的稳健性和准确性。方法 对现有基线模型M4C(multimodal multi-copy mesh)进行改进,针对视觉对象间的“空间关联”和文本单词间的“语义关联”这两种互补的先验知识进行建模,并在此基础上设计了一种通用的知识表征增强注意力模块以实现对两种关系的统一编码表达,得到知识表征增强的KR-M4C(knowledge-representation-enhan... 相似文献
18.
针对包含复杂语义信息的视频检索的需要,提出了一种基于关系代数的多模态信息融合视频检索模型,该模型充分利用视频包含的文本、图像、高层语义概念等多模态特征,构造了对应于多个视频特征的查询模块,并创新地使用关系代数表达式对查询得到的多模态信息进行融合。实验表明,该模型能够充分发挥多模型视频检索及基于关系代数表达式的融合策略在复杂语义视频检索中的优势,得到较好的查询结果。 相似文献