首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用韧性优良的共聚聚丙烯(PPR)作为增强基体,通过玻纤(GF)与PPR制备高性能PPR/GF复合材料,研究了流动改性剂、马来酸酐接枝聚丙烯(PP-g-MAH)和玻纤的含量以及挤出次数对PPR/GF复合材料结构与性能的影响.结果表明:自制的流动改性剂可大幅增加PPR/GF的熔体质量流动速率,流动性可适用于注塑工艺;PP-g-MAH增加了PPR基体与GF之间的界面相互作用,提高PP/GF复合材料的力学性能;随玻纤含量增加,PP/GF复合材料的拉伸强度和模量大幅增加,缺口冲击强度和断裂伸长率有所降低,但材料的韧性仍保持较高水平,所制备PPR/GF/PP-g-MAH共混材料的性能与ABS相当,可替代ABS工程塑料作为结构件使用;多次挤出加工会降低PPR/GF复合材料中玻纤的平均长度和材料的力学性能.  相似文献   

2.
以4,4′-二氨基二苯甲烷型双马来酰亚胺(BDM)、二胺基二苯甲烷(DDM)及环氧丙烷(PO)为主要原料合成了BDM-DDM-PO三元共聚物,并以此作为BDM的增韧改性剂制备BDM-DDM-PO/BDM复合材料。着重探讨了BDM-DDM-PO用量对复合材料的结构特征、韧性和热性能等影响。结果表明:当w(BDM-DDM-PO)=5.0%时,BDM-DDM-PO/BDM复合材料的热性能略高于纯BDM体系,但前者的冲击强度(14.39 kJ/m2)和弯曲强度(97.4 MPa)分别比后者提高了39.71%和6.21%,前者的冲击断面呈韧性断裂特征,说明适量的增韧改性剂可有效提高BDM-DDM-PO/BDM复合材料的韧性。  相似文献   

3.
以马来酸酐接枝无规共聚聚丙烯(PPR-g-MAH)为相容剂,采用熔融插层法制备了无规共聚聚丙烯(PPR)/有机蒙脱土(OMMT)纳米复合材料,通过对PPR/OMMT纳米复合材料的基本断裂功(EWF)的表征,并结合它们的拉伸性能和冲击强度的测试分析,探讨了PPR/OMMT纳米复合材料的断裂机理和塑性变形机理,以及OMMT用量对PPR断裂强度和拉伸强度的影响;SEM观察揭示了OMMT在PPR基体中的分散性程度随含量的增加变差。结果表明:在PPR-g-MAH的作用下OMMT能有效提高PPR/OMMT的拉伸强度,OMMT质量分数低于4%时,PPR/OMMT纳米复合材料的冲击强度(Gc)、比基本断裂功(we)和塑性变形能力均得到提高。PPR/OMMT纳米复合材料的we和Gc具有相似的变化趋势,且Gc总是大于we。  相似文献   

4.
无规共聚聚丙烯(PPR)管材作为一种新型绿色建筑材料,被广泛应用在民用建筑和工业给排水设施等方面,但由于PPR耐热性和耐低温冲击性能较差,限制了应用,因此提高PPR的韧性尤其是低温韧性成为研究的重点。以PPR为基体,通过挤出机造粒、注塑机成型等手段与聚烯烃弹性体POE、聚苯乙烯弹性体TPE两种不同的增韧剂共混并进行研究,分析了不同配方对二元共混体系的拉伸强度、断裂伸长率、缺口冲击韧性以及低温冲击性能的影响;通过DSC、XRD、冲击试验机等仪器设备研究PPR复合材料的熔融结晶性能和力学性能。根据研究结果,得到耐低温抗冲击性能较为理想的PPR复合材料最优增韧方法。结果表明:随着弹性体TPE、POE用量的增加,在室温、0、-15和-25℃时共混体系的缺口冲击强度都有所增强。与POE相比较,弹性体TPE对PPR的增韧作用尤为明显,TPE填量为15%时,PPR/TPE共混料的冲击韧性最理想,体系的断裂伸长率增幅更大,其综合力学性能最好,改性材料常温冲击强度较纯PPR提高82.5%,低温0、-15、-25℃冲击强度分别增加9.25、9.13、8.53 k J/m~2,断裂伸长率由279.62%增加到584.53%,而拉伸强度仅仅降低3.43 MPa。  相似文献   

5.
以四水硝酸钙与磷酸氢二铵为原料,采用共沉淀法制备了壳聚糖-羟基磷灰石(CS-HA)复合微球,并通过熔融共混法将其与聚乳酸(PLA)复合制得PLA/CS-HA复合材料,同时分析了CS-HA复合微球的结构以及PLA/CS-HA复合材料的性能。结果表明:CS已成功与HA复合,制得具有自组装微球结构的CS-HA复合物。当CS-HA复合微球添加量为5%时,PLA/CS-HA复合材料的弯曲强度较纯PLA提高了15.1%,较同填充量的PLA/HA复合材料提高了13.5%,而拉伸强度和冲击强度较纯PLA略有降低。此外,当CS-HA复合微球添加量为5%时,PLA/CS-HA复合材料的5%质量损失温度和失重速率峰值温度较纯PLA分别提高了33.1和22.2℃,说明CS-HA复合微球的加入提高了PLA的热稳定性;当CS-HA复合微球添加量为15%时,PLA/CS-HA复合材料的结晶度达到31.72%,较纯PLA提高了23.23%,这说明CS-HA复合微球可促进PLA的结晶。  相似文献   

6.
为获得抗菌性无规共聚聚丙烯(PPR)复合材料,分别采用硅烷偶联剂和钛酸酯偶联剂对纳米ZnO (Si-ZnO和Ti-ZnO)进行表面处理,并填充制备了PPR复合材料。对比研究了未处理的纳米ZnO和偶联剂表面处理的纳米ZnO填充PPR复合材料的力学性能、抗菌性能和结晶性能。结果表明:4%Si-ZnO和Ti-ZnO填充PPR的冲击强度为14. 2和13. 8 k J/m~2,而4%未改性纳米ZnO填充PPR的冲击强度仅为10. 8 k J/m~2。4%Ti-ZnO填充PPR制备的复合材料对大肠杆菌和金黄色葡萄球菌的抑菌率达到94. 2%和88%,而等含量纳米ZnO填充PPR复合材料对大肠杆菌和金黄色葡萄球菌的抑菌率仅为87%和51. 9%。改性和未改性纳米ZnO对PPR均具有异相成核作用,提高了PPR的结晶温度,但对PPR的熔融行为影响较小。  相似文献   

7.
在研究温度对无规共聚聚丙烯(PPR)缺口冲击强度影响的基础上,分别探讨了聚烯烃弹性体(POE)、β成核剂、纳米二氧化硅(Si O2)对PPR复合材料低温冲击强度的影响。通过扫描电镜观察冲击断面的形貌特征,分析能量耗散方式。结果表明,三种填料可协同提高PPR低温冲击强度,在PPR/20%POE/0.1%β成核剂/纳米Si O2四元共混体系中,纳米Si O2的最佳质量分数在2%左右,复合材料的低温冲击强度约为纯PPR的8倍。  相似文献   

8.
采用硬脂酸增容改性制备大豆粉/乙烯-醋酸乙烯共聚物(EVA)复合材料,研究了硬脂酸增容改性剂不同添加量对复合材料形貌结构、力学性能、加工性能和热性能等影响。结果表明,随着硬脂酸的加入,大豆粉/EVA复合材料的力学性能、加工性能、热稳定性和结晶度均有所提高。当硬脂酸添加量为大豆粉质量的5%时,制备得到的复合材料力学性能最佳。硬脂酸增容改性大豆粉/EVA复合材料拉伸强度为10.3 MPa,相较于纯豆粉/EVA复合材料拉伸强度提高了71.6%;伸长率为1 100%,比纯豆粉/EVA复合材料的断裂伸长率提高了113.3%。扫描电子显微镜(SEM)分析表明,大豆粉经硬脂酸增容改性剂处理后,大豆粉与EVA基材的相容性得到改善,因此在宏观上表现为复合材料的力学性能和加工性能得到提高。  相似文献   

9.
将接枝PP(g-PP)加入到聚丙烯(PP)/玻纤(GF)复合材料中,制备了一种高性能PP玻纤复合材料,研究了g-PP用量及玻纤含量对复合材料力学性能、耐热性能及熔体流动性能的影响。研究表明,g-PP能够显著改善PP/GF复合材料的力学性能及耐热性能,添加适量g-PP能使复合材料的拉伸强度达到AS/GF复合材料的性能标准,冲击强度及耐热温度大大高于其标准,对加工流动性没有明显影响。加入适量g-PP能使PP/GF复合材料发生脆韧转变,提高复合材料的结晶温度,减小材料的球晶尺寸。该玻纤增强PP复合材料有望替代AS/GF而应用于空调风轮的制造。  相似文献   

10.
《塑料》2015,(2)
用"点击化学"法制备巯基改性乙烯基硅树脂微球,将其与Co2+作用得到改性硅树脂微球,采用FTIR、XPS、TEM对改性硅树脂微球进行表征分析。将微球添加到PP中,制备PP复合材料,研究和对比了改性硅树脂的添加量对复合材料的耐热、结晶和阻燃性能的影响并分析了阻燃机理。结果表明:改性硅树脂微球的粒径均一,表面羧基与Co2+以配位方式结合,微球的加入能有效提高体系的耐热性能,改变PP的晶粒尺寸和结晶度,并且当添加量为11%时,其氧指数提高到25.7%,成炭效果好,阻燃性能也得到提高。  相似文献   

11.
以液晶双马来酰亚胺(IA)为改性剂,制备了 IA 质量含量不同的环氧树脂(EP)/IA 复合材料体系,用冲击强度仪、扫描电镜、热变形温度仪、热失重仪等测试手段对复合材料的力学性能和热性能进行测试分析。结果表明,复合材料的冲击强度均有所提高,当 IA 的含量为0.8%(质量分数,下同)时,冲击强度提高了5.3 kJ/m~2;当 IA 含量为1.5%时,复合材料的热变形温度较纯 EP 提高了12℃,失重5 %时的温度(T5)提高了57℃,失重50%时的温度(T50)提高了45℃。  相似文献   

12.
研究了不同组成的聚氯乙烯(PVC)树脂/耐热改性剂/(甲基丙烯酸甲酯/丁二烯/苯乙烯)共聚物(MBS)复合体系的力学性能和耐热性能,用扫描电子显微镜分析共混材料的冲击断面微观形态,用动态热机械分析仪测定其动态热力学性能.结果表明,在PVC中添加8份MBS、10份耐热改性剂时共混材料的力学性能和耐热性能达到一个均衡值,冲击断面出现了明显的"须根"现象,PVC材料由脆性断裂转变为韧性断裂,二者协同作用既提高了共混材料的韧性,又改善了其耐热性能.  相似文献   

13.
以液晶双马来酰亚胺(IA)为改性剂,制备了 IA 质量含量不同的环氧树脂(EP)/IA 复合材料体系,用冲击强度仪、扫描电镜、热变形温度仪、热失重仪等测试手段对复合材料的力学性能和热性能进行测试分析。结果表明,复合材料的冲击强度均有所提高,当 IA 的含量为0.8%(质量分数,下同)时,冲击强度提高了5.3 kJ/m~2;当 IA 含量为1.5%时,复合材料的热变形温度较纯 EP 提高了12℃,失重5 %时的温度(T_5)提高了57℃,失重50%时的温度(T_(50))提高了45℃。  相似文献   

14.
CE/EP/纳米SiC复合材料研究   总被引:6,自引:6,他引:0  
采用纳米SiC和环氧树脂(EP)对双酚A型氰酸酯树脂(CE)进行改性。研究了不同含量的纳米SiC对CE/EP/纳米SiC复合体系反应性及CE/EP/纳米SiC复合材料力学性能的影响,采用透射电子显微镜表征了材料的微观形貌,利用差示扫描量热法研究了固化树脂的热性能。结果表明,纳米SiC对CE/EP/纳米SiC复合体系具有明显的催化作用,并且能使复合材料的冲击强度提高123.62%,弯曲强度提高140.29%,有效发挥其增强增韧作用,还能很好地保持复合材料的耐热性能。  相似文献   

15.
以环氧树脂(EP)、双马来酰亚胺(BMI)、4,4’-二氨基二苯砜(DDS)和短切碳纤维(SCF)等为主要原料制备了EP/BMI/DDS/SCF复合材料,并研究了SCF添加量对复合材料力学性能和热性能的影响。结果表明,当SCF添加量为0.25 %(质量分数,下同)时,EP/BMI/DDS/SCF复合材料的力学性能提高最大,其拉伸强度、弯曲强度、弯曲模量和缺口冲击强度比未添加SCF时的EP/BMI/DDS复合材料分别提高了48.52 %、32.15 %、25.77 %以及150.91 %;此外,SCF的加入有助于提高复合材料的热性能。  相似文献   

16.
分别以纳米碳酸钙、滑石粉和纳米蒙脱土作为改性剂,对PPR材料的刚强度以及低温韧性进行改性,研究了不同无机粒子对PPR材料各项力学性能的影响。结果表明:无机粒子的加入均会提高材料的弯曲性能,而过量加入会降低材料的屈服强度;无机粒子均能改善材料的低温脆性,但对常温冲击强度影响不大,其中滑石粉对PPR材料的综合性能提升效果最好,当其用量为6%时,PPR复合材料拉伸强度增加了0.6 MPa,低温冲击强度是改性前的1.7倍。  相似文献   

17.
以聚丙烯(PP)树脂为基体,加入玄武岩纤维(BF)和相关助剂,通过双螺杆挤出机熔融共混制得相应复合材料。考查相容剂对PP/BF复合材料性能影响、对PP/BF复合材料和PP/玻璃纤维(GF)复合材料力学性能、微观形貌和耐热氧老化等性能进行对比。通过实验数据分析,加入相容剂后,拉伸强度提高126.8%,弯曲强度提高223.8%,弯曲弹性模量提高119.9%,悬臂梁缺口冲击强度提高223.2%。在同样质量配比下,PP/BF复合材料较PP/GF复合材料拉伸强度提高9.8%,弯曲强度提高11.0%,弯曲弹性模量提高5.8%,悬臂梁缺口冲击强度降低10.7%。从微观电镜分析,加入相容剂可明显改善纤维与PP基材界面浸润程度。另外,BF比GF更易使复合材料老化,常规热氧老化剂1010和168对纤维增强PP类材料耐老化效果并不好,用等量自制热氧老化剂可解决此问题。  相似文献   

18.
EP/CF/纳米SiO2复合材料激光作用下的性能研究   总被引:1,自引:1,他引:0  
在环氧树脂(EP)中添加纳米SiO2空心微球,制备添加不同比例纳米SiO2的EP浇注体和EP/碳纤维(CF)复合材料.经热重(TG)分析仪测试,发现添加纳米SiO2后EP的耐热性能明显提高,其中纳米SiO2质量分数为10%时其耐热性能最好;对有、无纳米SiO2的EP浇注体和EP/CF复合材料层板进行强功率激光辐照试验,结果表明,添加纳米SiO2空心微球能明显提高复合材料在激光作用下的抗烧蚀和隔热性能.  相似文献   

19.
采用机械力化学法对垃圾焚烧飞灰进行表面改性,得出优化工艺参数为:硬脂酸钠作为改性剂,改性剂用量2%(wt),球磨机转速200 r×min~(-1),改性时间150 min,球料比3:1。在此参数下,垃圾焚烧飞灰吸油值为28.2 g×(100 g)~(-1),接触角为110.5°,且由傅里叶红外光谱分析可得改性剂与粉体表面存在化学反应。对PP/垃圾焚烧飞灰复合材料进行测试表明50%飞灰添加量的复合材料Cr(Ⅵ)离子浸出浓度为0.05μg×mL~(-1),且PP/改性飞灰复合材料的拉伸性能、冲击强度及断裂伸长率均优于PP/未改性飞灰复合材料。  相似文献   

20.
首先通过静电作用将氧化石墨烯(GO)与2,3–环氧丙基三甲基氯化铵(GTMAC)结合,再与马来酸酐(MAH)接枝聚苯醚(PPE)(PPE-g-MAH)发生反应,制得PPE接枝GO (GO-g-PPE)作为尼龙66 (PA66)材料的改性剂,采用共混挤出方式得到GO-g-PPE改性PA66复合材料。探讨了接枝前后的改性剂及添加量对复合材料力学性能、吸水率和摩擦性能的影响,采用扫描电子显微镜、差示扫描量热分析对复合材料界面相容性及热性能进行表征。结果表明,接枝后的GO-g-PPE与PA66的界面相容性明显优于仅添加GO/PPE的效果;当加入GO-g-PPE的质量分数≤0.8%时,随着GO-g-PPE用量的增加,GO-g-PPE改性PA66复合材料的力学性能有所提升,再继续增加GOg-PPE的用量反而使复合材料的力学性能下降。添加质量分数0.8%的GO-g-PPE时,GO-g-PPE改性PA66复合材料的热性能、力学性能最佳,与纯PA66相比,复合材料的结晶温度升高4℃,拉伸强度提高8.9%,断裂伸长率提高17.9%,缺口冲击强度提高37.6%;添加质量分数1.0%的GO-g-PPE时,复合材料的吸水率降低35.1%,摩擦系数减小14.3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号