首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Orientation of reinforcement fibers in injection molded parts is a key factor in determining their strength and stiffness: therefore stress-strain analyses based on isotropic material models produce only rough results. We present a flow/strain analysis methodology that accounts for the actual anisotropic material properties and fiber orientation. Material properties are determined by experiment, fiber orientation is inferred from flow simulation results (velocity vectors). Stress/strain fields are calculated by means of finite element analysis. Results show that for notched parts molded from short glass reinforced polyamide resin, there is a significant dependence of the strain concentration on the local fiber orientation resulting from different injection molding conditions.  相似文献   

2.
Injection molding of fiber‐reinforced polymeric composites is increasing with demands of geometrically complex products possessing superior mechanical properties of high specific strength, high specific stiffness, and high impact resistance. Complex state of fiber orientation exists in injection molding of short fiber reinforced polymers. The orientation of fibers vary significantly across the thickness of injection‐molded part and can become a key feature of the finished product. Improving the mechanical properties of molded parts by managing the orientation of fibers during the process of injection molding is the basic motivation of this study. As a first step in this direction, the present results reveal the importance of packing pressure in orienting the fibers. In this study, the effects of pressure distribution and viscosity of a compressible polymeric composite melt on the state of fiber orientation after complete filling of a cavity is considered experimentally and compared with the simulation results of Moldflow analysis. POLYM. COMPOS. 28:214–223, 2007. © 2007 Society of Plastics Engineers  相似文献   

3.
Fiber‐reinforced thermoplastic for low weight application become increasingly important for many industrial branches. During the injection molding of short fiber‐reinforced thermoplastic parts the fibers become orientated. This orientation is determined on the one hand by the geometry of the part, and on the other hand by the injection molding parameters, and influence the mechanical behavior of the part. The determination of the fiber properties that is, the orientation distribution of the fibers, is therefore of considerable interest. Since a more accurate fiber orientation prediction of the injection molding simulation will lead to a more precise structural simulation the objective of the present work is to achieve a preferably accurate orientation distribution. To describe the orientation distribution of the fibers, the fiber orientation tensor defined by Advani and Tucker (Advani and Tucker, Journal of Rheology, 31, 751 (1987)) was used. To determine the entries of this tensor micro computed tomography scans (μCT‐scans) of an injection‐molded plate, as well as an injection‐molded specimen with different cross section and shape were performed. Injection molding simulation using Autodesk Moldflow Insight were carried out. The residual strain closure (RSC) model was the underlying model to depict the fiber orientation distribution, or rather the orientation tensors. The two model parameters, the fiber interaction coefficient Ci and the scalar factor κ , were adapted by an optimization procedure, in such a way that the orientation distributions of the simulations fit the results of the μCT‐analysis at its best. POLYM. ENG. SCI., 59:E152–E160, 2019. © 2018 Society of Plastics Engineers  相似文献   

4.
5.
The fatigue behavior of long fiber reinforced nylon 66 has been investigated by measuring fatigue crack propagation rates of injection molded samples. Plaques varying in thickness from 3 to 10 mm were employed for nylong 66 containing either glass, carbon or aramid fibers. Both conventional chopped, short fiber reinforcements and pultruded long fiber filled nylon 66 were examined. Long fiber reinforced nylon 66 exhibits improved fatigue resistance as shown by decreases in fatigue crack propagation rates compared to short fiber filled composites. Using a fracture mechanics analysis, it is shown that the improvements are due primarily to the higher moduli of the long fiber reinforced nylon 66, with only a slight increase in the calculated strain energy release rate associated with fatigue crack growth. For short or long glass fibers, and for short carbon fibers, the effects of fiber orientation on fatigue crack growth rates can be predicted from the fracture mechanics model. More significant effects of fiber length on fatigue fracture energies are noted for long aramid and long carbon reinforced nylon 66. It is also shown that thicker plaques can exhibit poorer fatigue fracture behavior owing to their inferior core sections.  相似文献   

6.
The structural utility of short, glass fiber-reinforced epoxy composities is experimentally investigated for fiber volume fractions from 0.15 to 0.5. The strength and stiffness of systems with randomly oriented fibers are compared with those of similar composites with aligned fibers. The ultimate strength of both types of material increses in a reasonably linear fashion with volume fraction up to 0.5. For all volume fractions in this range, strength of the random composites is slightly higher than the longitudinal and much higher than the transverse strength of equivalent compsites with aligned fibers. The modulus of the random system is approximately two-thirds the longitudinal and twice the transverse modulus of the unidirectional material. The structural utility of the flow molded material is greatest in uniaxial, stiffness critical situations. The greater strength and planar isotropy of the random composites make them preferable in all strength limited or multiaxial applications.  相似文献   

7.
基于Mori?Tanaka均匀化方法,对短纤维复合材料开孔板力学性能进行研究。首先,使用Mori?Tanaka方法预测单向和二维2种分布形式的短纤维复合材料应力?应变曲线曲线。其次,通过试验方法分析不同区域纤维取向对开孔板力学性能的影响。最后,使用多尺度方法研究不同注塑位置和不同开孔方式对开孔板力学性能的影响,该部分在宏观有限元分析中耦合了注塑模拟的纤维方向分布以及Mori?Tanaka均匀化方法得到的复合材料参数。结果表明,短边注塑开孔板综合力学性能更好;孔周围纤维分布是影响应力集中的主要因素;整体的纤维取向分布影响开孔板的刚度;单向纤维材料的角度对材料性能的影响不是单调的。  相似文献   

8.
以长玻纤增强聚丙烯(PP)注塑制品为研究对象,通过引入微、纳尺度第二增强相调控长纤维在注塑制品中的取向度,从而获得取向度较低的皮层结构,以诱导长纤维在注塑件空间内形成连续、均匀的三维网络结构,从而明显提高制品的力学性能.对不同尺度混杂填充长纤维注塑微观结构的比较分析结果表明:加入纳米尺度第二相碳纳米管(CNTs),在基...  相似文献   

9.
The effects of processing and part geometry on the local mechanical properties of injection‐molded, 30 wt% short‐fiber‐reinforced filled poly(butylene terephthalate) (PBT) are characterized by mechanical tests on specimens cut from rectangular plaques of different thicknesses injection molded at several different processing conditions. Stiffness data from tensile tests at 12.7‐mm intervals on 12.7‐mm‐wide strips cut from injection‐molded plaques—both along the flow and cross‐flow directions—and flexural tests on these strips show consistency of plaque‐to‐plaque local properties. Also, in addition to the well‐known anisotropic properties caused by flow‐induced fiber orientation, injection‐molded short fiber composites exhibit in‐plane and through‐thickness nonhomogeneity—as indicated by in‐plane property variations, by differences between tensile and flexural properties, and by the flexural strength being significantly higher than the tensile strength. The sensitivity of these mechanical properties to process conditions and plaque geometry have also been determined: the flow‐direction tensile modulus increases with fill time, the differences between flow and cross‐flow properties decrease with increasing thickness, and both the flow and cross‐flow flexural moduli decrease with increasing plaque thickness. While the flexural modulus is comparable to the tensile modulus, the flexural strength is significantly higher than the tensile strength. POLYM. COMPOS., 26:428–447, 2005. © 2005 Society of Plastics Engineers  相似文献   

10.
Tensile and fatigue properties of an injection molded short E‐glass fiber reinforced polyamide‐6,6 have been studied as a function of two key injection molding parameters, namely melt temperature and hold pressure. It was observed that tensile and fatigue strengths of specimens normal to the flow direction were lower than that in the flow direction, indicating inherent anisotropy caused by injection molding. Tensile and fatigue strengths of specimens with weld line were significantly lower than that without weld lines. For specimens in the flow direction, normal to the flow direction and with weld line, tensile strength and fatigue strength increased with increasing melt temperature as well as increasing hold pressure. The effect of specimen orientation on the tensile and fatigue strengths is explained in terms of the difference in fiber orientation and skin‐core morphology of the specimens. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers.  相似文献   

11.
The injection molding ability of long glass fiber reinforced polyamide pellets was studied. The injection moldable materials were produced by a melt impregnation process of continuous fiber rovings. The rovings were chopped to pellets of 9 mm length. Chopped pellets with a variation in the degree of impregnation and fiber concentration were studied. The injection molded samples were analyzed for fiber concentration, fiber length, and fiber orientation. Dumbbell-shaped tensile bars were made to evaluate the mechanical properties. The fibers in the tensile bars had a high orientation in the flow direction and minor fiber concentration gradients were observed. The fiber lengths decreased with fiber concentration from 1.6 mm for a 2 vol% to 0.6 mm for a 25 vol% system. The tensile and impact properties increased considerably with fiber concentration. A low degree of impregnation in the pellets of the fibers resulted in somewhat lower tensile and impact properties.  相似文献   

12.
To determine three‐dimensional fiber orientation states in injection‐molded short‐fiber composites, a confocal laser scanning microscope (CLSM) is used. Since the CLSM optically sections the specimen, more than two images of the cross sections on and below the surface of the composite can be obtained. Three‐dimensional fiber orientation states can be determined by using geometric parameters of fiber images obtained from two parallel cross sections. For experiments, carbon‐fiber‐reinforced polystyrene is examined by the CLSM and geometric parameters of fibers on each cross‐sectional plane are measured by an image analysis. In order to describe fiber orientation states compactly, orientation tensors are determined at different positions of the prepared specimen. Three‐dimensional orientation states are obtained without any difficulty by determining the out‐of‐plane angles utilizing fiber images on two parallel planes acquired by the CLSM. Orientation states are different at different positions and show the shell–core structure along the thickness of the specimen. Fiber orientation tensors are predicted by a numerical analysis and the numerically predicted orientation states show good agreement with measured ones. However, some differences are found at the end of cavity. They may result from the fountain flow effects, which are not considered in the numerical analysis. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 500–509, 2003  相似文献   

13.
Long‐flexible fiber orientation under the influence of a flow field is an important engineering problem. One can encounter this problem in many fields. For example in fiber reinforced thermoplastics produced in both injection and compression molding, fiber orientation affect final part properties. Fiber orientation models are constructed for short fibers in a simple shear flow case and though this case is important it is not the general case. In this work we extract rotational friction coefficients from Jeffery's model, create a general case long‐flexible fiber orientation model, and apply it in a simple shear flow. POLYM. COMPOS., 37:2425–2433, 2016. © 2015 Society of Plastics Engineers  相似文献   

14.
The mechanical and fracture properties of injection molded short glass fiber)/short carbon fiber reinforced polyamide 6 (PA 6) hybrid composites were studied. The short fiber composites of PA 6 glass fiber, carbon fiber, and the hybrid blend were injection molded using a conventional machine whereas the two types of sandwich skin–core hybrids were coinjection molded. The fiber volume fraction for all formulations was fixed at 0.07. The overall composite density, volume, and weight fraction for each formulation was calculated after composite pyrolysis in a furnace at 600°C under nitrogen atmosphere. The tensile, flexural, and single‐edge notch‐bending tests were performed on all formulations. Microstructural characterizations involved the determination of thermal properties, skin–core thickness, and fiber length distributions. The carbon fiber/PA 6 (CF/PA 6) formulation exhibits the highest values for most tests. The sandwich skin‐core hybrid composites exhibit values lower than the CF/PA 6 and hybrid composite blends for the mechanical and fracture tests. The behaviors of all composite formulations are explained in terms of mechanical and fracture properties and its proportion to the composite strength, fiber orientation, interfacial bonding between fibers and matrix, nucleating ability of carbon fibers, and the effects of the skin and core structures. Failure mechanisms of both the matrix and the composites, assessed by fractographic studies in a scanning electron microscope, are discussed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 957–967, 2005  相似文献   

15.
The through-thickness fiber orientation distribution of injection molded polycarbonate plates was experimentally determined by light reflection microscopy and manual digitization of polished cross sections. Fiber length distribution was determined by pyrolysis tests followed by image analysis. A statistical analysis was done to determine the confidence limits of the fiber orientation results. The fiber orientation distribution was described by using second-order orientation tensors. The through-thickness stiffness variations were determined by the orientation averaging approach. This layer stiffness distribution was used to simulate the behavior of beams subjected to three point bending with a FEM Ansys model. The results were compared with experimentally determined flexural stiffness both in the flow direction and in the transverse flow direction. The effect of flow rate and melt-temperature on stiffness and fiber orientation is discussed.  相似文献   

16.
A numerical simulation is presented that combines the flow simulation during injection molding with an efficient algorithm for predicting the orientation of short fibers in thin composite parts. Fiber-orientation state is represented in terms of a second-order orientation tensor. Fiber-fiber interactions are modeled by means of an isotropic rotary diffusion. The simulation predicts flow-aligned fiber orientation (shell region)near the surface with transversely aligned (core region) fibers in the vicinity of the mid-plane. The effects of part thickness and injection speed on fiber orientation are analyzed. Experimental measurements of fiber orientation in plaque-shaped parts for three different combinations of cavity thickness and injection speed are reported. It is found that gapwise-converging flow due to the growing layer of solidified polymer near the walls tends to flow-align the fibers near the entrance, whereas near the melt front, gapwise-diverging flow due to the diminishing solid layer tends to lign the fibers transverse to the flow. The effect of this gapwise-converging-diverging flow is found to be especially significant for thin parts molded at slower injection speeds, which have a proportionately thicker layer of solidified polymer during the filling process. If the fiber orientation is known, predictions of the anisotropic tensile moduli and thermal-expansion coefficients of the composite are obtained by using the equations for unidirectional composites and taking an orientation average. These predictions are found to agree reasonably well with corresponding experimental measurements.  相似文献   

17.
The variation of fiber orientation and content within injection molded rectangular plates is investigated. Fiber orientation and volume fraction are measured using metallographic polishing and a newly developed image-analysis system; fiber weight-fractions are measured using an ashing method. Three different moldings are studied; two of the long-fiber compound Verton, Molded at different injection speeds, and one of the short-fiber compound Maranyl. Microstructural regions are identified and characterized, and the flow mechanisms by which they are formed are discussed. The results show that the long fibers segregate extensively, whereas the short ones do not. The major differences between the two compounds are found in the core: the core of the long-fiber compound has a higher content and orientation of fibers than that of the short-fiber compound.  相似文献   

18.
In this work, long basalt fiber reinforced composites were investigated and compared with short basalt fiber reinforced compounds. The results show that long fiber reinforced thermoplastic composites are particularly advantageous in the respects of dynamic mechanical properties and injection molding shrinkage. The fiber orientation in long basalt fiber reinforced products fundamentally differs from short basalt fiber reinforced ones. This results in more isotropic molding shrinkage in case of long basalt fiber reinforced composites. The main advantage of the used long fiber thermoplastic technology is that the special long fiber reinforced pellet can be processed by most conventional injection molding machines. During extrusion compounding the fibers in the compound containing 30 wt% fibers are fragmented to an average length of 0.48 mm (typical of short fiber reinforced thermoplastic compounds), this length decreases further during injection molding to 0.20 mm. Contrarily using long fiber reinforced pellets and cautious injection molding parameters, an average fiber length of 1.8 mm can be achieved with a conventional injection molding machine, which increased the average length/diameter ratio from 14 to 130. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

19.
Fiber orientation induced by injection mold filling of short-fiber-reinforced thermoplastics (FRTP) causes anisotropy in material properties and warps molded parts. Predicting fiber orientation is important for part and mold design to produce sound molded parts. A numerical scheme is presented to predict fiber orientation in three-dimensional thin-walled molded parts of FRTP. Folgar and Tucker's orientation equation is used to represent planar orientation behavior of rigid cylindrical fibers in concentrated suspensions. The equation is solved about a distribution function of fiber orientation by using a finite difference method with input of velocity data from a mold filling analysis. The mold filling is assumed to be nonisothermal Hele-Shaw flow of a non-Newtonian fluid and analyzed by using a finite element method. To define a degree of fiber orientation, an orientation parameter is calculated from the distribution function against a typical orientation angle. Computed orientation parameters were compared with measured thermal expansion coefficients for molded square plates of glass-fiber-reinforced polypropylene. A good correlation was found.  相似文献   

20.
Fiber orientations caused by the flow in the thickness plane during injection molding of short fiber reinforced polymer composites has been simulated. The Lagrangian scheme was employed for the finite element analysis. Flow fields were solved by using a penalty method with Uzawa's scheme and orientation fields were also solved by using the second order orientation tensor. A generalized Newtonian fluid whose rheological behavior is independent of fiber orientation was assumed. Automatic mesh generation using an elliptic grid generator was developed for quadrilateral elements. Mold filling and orientation analyses were performed for a cavity of rectangular cross section. To determine the orientation state in other cross-sectional geometries, numerical analyses were also performed for two different typical cross sections. As the result, orientation of short fibers in the flow field was analyzed qualitatively and quantitatively. According to the state of short fiber orientation in the thickness plane, the orientation field can be classified into three regions in the flow direction and three layers in the thickness direction. Orientation of short fibers was mainly influenced by elongational and shear flows. It was observed that critical values are present for upper limits of orientation. Effects of initial orientation at the inlet on the orientation field were examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号