共查询到17条相似文献,搜索用时 78 毫秒
1.
如何有效挖掘单模态表征并实现多模态信息的充分融合是多模态情感分析研究的重点之一。针对多模态情感分析中的模态间噪声和多模态特征融合不充分等问题,提出一种基于跨模态门控机制和改进融合方法的多模态情感分析模型。首先,利用跨模态门控机制去除模态间噪声,提取互补信息以增强模态表示。然后,利用权重和相似约束分别关注不同模态情感贡献的差异性和情感表达的一致性。最后,结合模态的多层次表示获得情感分析的结果。在三个公开数据集上的实验结果表明,所提模型是有效的,相比已有一些模型取得了更好的性能。 相似文献
2.
为了平衡情感信息在不同模态中分布的不均匀性,获得更深层次的多模态情感表征,提出了一种基于双元双模态二次门控融合的多模态情感分析方法。对文本、视觉模态,文本、语音模态分别融合,充分考虑文本模态在三个模态中的优势地位。同时为了获得更深层次的多模态交互信息,使用二次融合。在第一次融合中,使用融合门决定向主模态添加多少补充模态的知识,得到两个双模态混合知识矩阵。在第二次融合中,考虑到两个双模态混合知识矩阵中存在冗余、重复的信息,使用选择门从中选择有效、精简的情感信息作为双模态融合后的知识。在公开数据集CMU-MOSEI上,情感二分类的准确率和F1值分别达到了86.2%、86.1%,表现出良好的健壮性和先进性。 相似文献
3.
多模态情感分析的目标是使用由多种模态提供的互补信息来实现可靠和稳健的情感分析。近年来,通过神经网络提取深层语义特征,在多模态情感分析任务中取得了显著的效果。而多模态信息的不同层次的特征融合也是决定情感分析效果的重要环节。因此,提出了一种基于自适应门控信息融合的多模态情感分析模型(AGIF)。首先,通过门控信息融合网络将Swin Transformer和ResNet提取的不同层次的视觉和色彩特征根据对情感分析的贡献进行有机融合。其次,由于情感的抽象性和复杂性,图像的情感往往由多个细微的局部区域体现,而迭代注意可以根据过去的信息精准定位这些情感判别区域。针对Word2Vec和GloVe无法解决一词多义的问题,采用了最新的ERNIE预训练模型。最后,利用自动融合网络“动态”融合各模态特征,解决了(拼接或TFN)确定性操作构建多模态联合表示所带来的信息冗余问题。在3个公开的真实数据集上进行了大量实验,证明了该模型的有效性。 相似文献
4.
情感分析是一项新兴技术,其旨在探索人们对实体的态度,可应用于各种领域和场景,例如产品评价分析、舆情分析、心理健康分析和风险评估。传统的情感分析模型主要关注文本内容,然而一些特殊的表达形式,如讽刺和夸张,则很难通过文本检测出来。随着技术的不断进步,人们现在可以通过音频、图像和视频等多种渠道来表达自己的观点和感受,因此情感分析正向多模态转变,这也为情感分析带来了新的机遇。多模态情感分析除了包含文本信息外,还包含丰富的视觉和听觉信息,利用融合分析可以更准确地推断隐含的情感极性(积极、中性、消极)。多模态情感分析面临的主要挑战是跨模态情感信息的整合,因此,重点介绍了不同融合方法的框架和特点,并对近几年流行的融合算法进行了阐述,同时对目前小样本场景下的多模态情感分析进行了讨论,此外,还介绍了多模态情感分析的发展现状、常用数据集、特征提取算法、应用领域和存在的挑战。期望此综述能够帮助研究人员了解多模态情感分析领域的研究现状,并从中得到启发,开发出更加有效的模型。 相似文献
5.
6.
在当前视频多模态情感分析研究中, 存在着未充分考虑模态之间的动态独立性和模态融合缺乏信息流控制的问题. 为解决这些问题, 本文提出了一种结合模态表征学习的多模态情感分析模型. 首先, 通过使用BERT和LSTM分别挖掘文本、音频和视频的内在信息, 其次, 引入模态表征学习, 以获得更具信息丰富性的单模态特征. 在模态融合阶段, 融合了门控机制, 对传统的Transformer融合机制进行改进, 以更精确地控制信息流. 在公开数据集CMU-MOSI和CMU-MOSEI的实验结果表明, 与传统模型相比, 准确性和F1分数都有所提升, 验证了模型的有效性. 相似文献
7.
如何对模态进行有效表示和对模态间信息进行高效融合,一直是多模态情感分析领域的一个热点问题。已有研究大都以Transformer为基础,对其中自注意力模块进行改进以达到跨模态融合的效果。但基于Transformer的融合方式往往忽略了不同模态之间的重要程度,同时Transformer无法有效地捕捉到时间特征。为此,提出了基于跨模态调制及模态门控网络模型。该模型利用LSTM网络和BERT分别作为视觉、听觉和文本模态的表示子网络;利用改进的Transformer模型的跨模态调制模块对不同的模态信息进行有效的融合;设计了模态门控网络,模拟人类对来自不同模态的信息进行综合的判断。利用MOSI、MOSEI数据集进行了对比实验,结果表明所提出的方法有效地提高了情感分类的准确度。 相似文献
8.
情感分析是指利用计算机自动分析确定人们所要表达的情感,其在人机交互和刑侦破案等领域都能发挥重大作用.深度学习和传统特征提取算法的进步为利用多种模态进行情感分析提供了条件.结合多种模态进行情感分析可以弥补单模态情感分析的不稳定性以及局限性等缺点,能够有效提高准确度.近年来,研究者多用面部表情信息、文本信息以及语音信息三种... 相似文献
9.
随着网络平台上各类图像、视频数据的快速增长,多模态情感分析与情绪识别已成为一个日益热门的研究领域.相比于单模态情感分析,多模态情感分析中的模态融合是一个亟待解决的关键问题.受到认知科学中情感唤起模型的启发,提出一种能够模拟人类处理多通道输入信息机制的深度情感唤醒网络(DEAN),该网络可实现多模态信息的有机融合,既能处理情绪的连贯性,又能避免融合机制的选择不当而带来的问题.DEAN网络主要由以下3部分组成:跨模态Transformer模块,用以模拟人类知觉分析系统的功能;多模态BiLSTM系统,用以模拟认知比较器;多模态门控模块,用以模拟情感唤起模型中的激活结构.在多模态情感分析与情绪识别的3个经典数据集上进行的比较实验结果表明,DEAN模型在各数据集上的性能均超越了目前最先进的情感分析模型. 相似文献
10.
基于全局语义交互的粗粒度注意力机制不能有效利用各模态间的语义关联提取到模态信息中的关键部分,从而影响分类结果。针对这个问题提出了一个模态信息交互模型MII(modal information interaction),通过细粒度注意力机制提取模态的局部语义关联特征并用于情感分类。首先,模态内信息交互模块用于构建模态内的联系并生成模态内交互特征,随后模态间信息交互模块利用图像(文本)的模态内交互特征生成门控向量来关注文本(图像)中相关联的部分,从而得到模态间的交互特征。考虑到特征中存在的冗余信息,模型加入了自适应特征融合模块,从全局特征层面对特征进行选择,增强了包含情感信息的关键特征的表达能力,弱化了冗余信息对分类结果的影响。在MVSA-Single和MVSA-Multi两个公开数据集上的实验结果表明,该模型优于一系列基线模型。 相似文献
11.
针对多模态情感分析中的模态内部特征表示和模态间的特征融合问题,结合注意力机制和多任务学习,提出了一种基于注意力的多层次混合融合的多任务多模态情感分析模型MAM(multi-level attention and multi-task)。首先,利用卷积神经网络和双向门控循环单元来实现单模态内部特征的提取;其次,利用跨模态注意力机制实现模态间的两两特征融合;再次,在不同层次使用自注意力机制实现模态贡献度选择;最后,结合多任务学习获得情感和情绪的分类结果。在公开的CMU-MOSEI数据集上的实验结果表明,情感和情绪分类的准确率和F;值均有所提升。 相似文献
12.
13.
针对现有的文档级情感分析模型大多只是考虑从词级对文本进行编码的问题,提出了一种基于多尺度卷积和门控机制的注意力情感分析模型。首先,使用多尺度卷积捕获不同粒度的局部相关性,从而得到更多不同层次的文本语义信息并形成更丰富的文本表示;其次,考虑到用户个性及产品信息对文本情感分类的影响,将全局用户产品信息融合到注意力中捕捉与用户和产品相关度较高的关键语义成分来生成文档表示;然后,引入门控机制来控制情感信息流向汇集层的路径;最后,通过全连接层和argmax函数实现情感分类。实验结果表明,与基准模型中性能最好的相比,所提模型在IMDB和Yelp2014两个数据集上的情感分类准确率分别提高了1.2个百分点和0.7个百分点,并且在IMDB和Yelp2013数据集上获得了最小的均方根误差(RMSE)。 相似文献
14.
随着社交网络的不断普及,相对于传统的文字描述,人们更倾向于发布图文结合的评论来表达自己的情感与意见。针对图文情感分析方法中仅考虑图文间的高级语义联系,而较少注意图片的低层次情感特征以及中层美学特征与文本情感之间关联性的问题,提出了一种基于多层次空间注意力(MLSA)的图文评论情感分析方法。所提方法以文本内容为驱动,使用MLSA设计图像与文本之间的特征融合方法,该特征融合方法不仅关注与文本相关的图像实体特征,而且充分利用图像的中层美学特征和低层视觉特征,从而从多个不同角度挖掘图文之间的情感共现。在两个公开的图文情感数据集MVSA_Single和MVSA_Multi上,该方法的分类效果相对于对比方法中最优的方法的分类效果在准确率上分别提高了0.96和1.06个百分点,在F1值上分别提高了0.96和0.62个百分点。实验结果表明,综合分析文本特征和图像特征之间的层次化联系能有效地增强神经网络捕捉图文情感语义的能力,从而更准确地预测图文整体的情感。 相似文献
15.
现有图像情感分析方法较少注意到显著性目标和人脸对图像情感表达的影响。提出一种多视觉目标融合的图像情感分析方法。首先在整张图像中检测显著性目标和人脸目标区域;然后利用特征金字塔改进CNN识别显著性目标情感,在多层监督模块上构建加权损失的CNN识别人脸的情感;最后将显著性目标情感、人脸目标情感与整张图像直接识别出的情感进行融合得到最终的情感分类结果。实验结果表明,多视觉目标融合的图像情感分析比直接识别整张图像的情感分析方法可获得更高的情感分类准确率。 相似文献
16.
针对时序多模态情感分析中存在的单模态特征表示和跨模态特征融合问题,结合多头注意力机制,提出一种基于多任务学习的情感分析模型.首先,使用卷积神经网络(CNN)、双向门控循环神经网络(BiGRU)和多头自注意力(MHSA)实现了对时序单模态的特征表示;然后,利用多头注意力实现跨模态的双向信息融合;最后,基于多任务学习思想,... 相似文献