共查询到3条相似文献,搜索用时 0 毫秒
1.
The feasibility of dextrose monohydrate as a non-animal sourced diluent in high shear wet granulation (HSWG) tablet formulations was determined. Impacts of granulation solution amount and addition time, wet massing time, impeller speed, powder and solution binder, and dry milling speed and screen opening size on granule size, friability and density, and tablet solid fraction (SF) and tensile strength (TS) were evaluated. The stability of theophylline tablets TS, disintegration time (DT) and in vitro dissolution were also studied. Following post-granulation drying at 60?°C, dextrose monohydrate lost 9% water and converted into the anhydrate form. Higher granulation solution amounts and faster addition, faster impeller speeds, and solution binder produced larger, denser and stronger (less friable) granules. All granules were compressed into tablets with acceptable TS. Contrary to what is normally observed, denser and larger granules (at ≥21% water level) produced tablets with a higher TS. The TS of the weakest tablets increased the most after storage at both 25?°C/60% RH and 40?°C/75% RH. Tablet DT was higher for stronger granules and after storage. Tablet dissolution profiles for 21% or less water were comparable and did not change on stability. However, the dissolution profile for tablets prepared with 24% water was slower initially and continued to decrease on stability. The results indicate a granulation water amount of not more than 21% is required to achieve acceptable tablet properties. This study clearly demonstrated the utility of dextrose monohydrate as a non-animal sourced diluent in a HSWG tablet formulation. 相似文献
2.
Indu Muthancheri Anik Chaturbedi Angelique Bétard Rohit Ramachandran 《Advanced Powder Technology》2021,32(6):2085-2096
This paper presents a predictive modeling approach of the high shear wet granulation process, quantifying the difference between the steady and induction granule growth behavior. The spatial heterogeneity in liquid binder distribution and shear rate is simulated using a compartmental population balance model. The granulator is divided into two compartments based on particle motion, which consists of a circulation compartment, and an impeller compartment. In the circulation compartment, a viscous dissipation dependent coalescence kernel is adapted for the aggregation process. In the impeller compartment a shear rate dependent aggregation kernel is implemented. The model was calibrated and validated using the dynamic evolution of granule mean size (d50). The granulation dynamics are studied with respect to change in impeller speed, liquid to solid ratio, wet massing time, initial porosity, and binder viscosity. The transition from induction growth to steady growth regime with changing process conditions is demonstrated using the model. It is observed that the model captures the effect of process parameters and spatial heterogeneity on the dynamic evolution of d50. 相似文献
3.
《Advanced Powder Technology》2022,33(1):103369
High shear wet granulation (HSWG), as a widely used granulation technology, has been studied extensively. However, for the HSWG of formulations containing hydrophobic components, the influence of process variables on the properties of granules and tablets has not been reported. In the present study, based on a combination of quality by design and multivariate analysis (MVA) approaches, quercetin with high-dose and high-hydrophobicity was used to study the relationship between process variables, granule properties, and tablet properties in HSWG systematically. Control and response variables were determined using risk assessment. The optimal fitting empirical models established by Box-Behnken design showed that the liquid to solid ratio and impeller speed were the most important factors, which affected all product properties except Carr’s index and yield pressure. Instead, the influence of wet massing time was relatively small (only the effects on yield, granule size, granule hardness, and compression ratio were significant). Then, the process design space was obtained by limiting the related critical quality attributes, which was verified effectively. Scanning electron microscope images showed that smooth granules were produced using higher process parameters, whereas rough and porous granules resulted at lower process parameters. Furthermore, the MVA results demonstrated that increasing the granule hardness led to an increase in the compression ratio and a decrease in tensile strength of the tablets. Tablet fragility and disintegration time were mainly affected by granule density and bulk density, respectively, and both were negatively correlated. The established research paradigm is not only conducive to the successful development of quercetin products, but also provides valuable guidance for improving HSWG–based product development with such formulation characteristics. 相似文献