首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation of silver nanoparticles (AgNPs) by a biological route employing Crossandra infundibuliformis leaf extract has been investigated. The silver nanoparticles were formed in 1 h by stirring at room temperature. In this case, yellowish brown color was developed. Formation of AgNP was confirmed by surface plasmon spectra and absorbance peaks at 457 nm. Crystalline nature of the nanoparticle was face centered cubic (fcc) structure. The AgNPs formed were flake-like in shape and the average particle size was about 38 nm.  相似文献   

2.
In the present study, the potential of aqueous leaf extract of Nigella arevensis for biosynthesis of silver nanoparticles (AgNPs) was evaluated. The formation of AgNPs was confirmed by color changes and UV–visible spectroscopy, which showed absorbance maxima peak at 416?nm. The transmission electron microscope (TEM) image showed the AgNPs to be anisotropic and mostly spherical with sizes in the range of 5–100?nm. Fourier transform infrared (FTIR) analysis indicated that the flavonoids, alkaloids and phenolic groups present in leaf extract were involved in the reduction and capping of phytogenic AgNPs. These nanoparticles showed the cytotoxic effects against H1229 and MCF-7 cancer cell lines with an IC50 value of 10?μg/mL. AgNPs showed insignificant antioxidant properties compared to the crude extract, and it was effective against clinical isolated bacterial strains. Furthermore, the bioderived AgNPs displayed significant catalytic activity against methylene blue. These results confirmed the advantages and applications of these phytogenic AgNPs using the green method in various fields.  相似文献   

3.
A simple and eco‐friendly method for efficient synthesis of stable colloidal silver nanoparticles (AgNPs) using Mentha pulegium extracts is described. A series of reactions was conducted using different types and concentrations of plant extract as well as metal ions to optimize the reaction conditions. AgNPs were characterized by using UV–vis spectroscopy, transmission electron microscopy, atomic force microscopy, dynamic light scattering, zetasizer, energy‐dispersive X‐ray spectroscopy (EDAX) and Fourier transform infrared spectroscopy (FTIR). At the optimized conditions, plate shaped AgNPs with zeta potential value of ‐15.7 and plasmon absorption maximum at 450 nm were obtained using high concentration of aqueous extract. Efficient adsorption of organic compounds on the nanoparticles was confirmed by FTIR and EDAX. The biogenic AgNPs displayed promising antibacterial activity on Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes. The highest antibacterial activity of 25 µg mL‐1 was obtained for all the strains using aqueous extract synthesized AgNPs. The aqueous extract synthesised AgNPs also showed considerable antifungal activity against fluconazole resistant Candida albicans. The cytotoxicity assay revealed considerable anticancer activity of AgNPs on HeLa and MCF‐7 cancer cells. Overall results indicated high potential of M. pulegium extract to synthesis high quality AgNPs for biomedical applications.Inspec keywords: silver, nanoparticles, nanofabrication, botany, antibacterial activity, biomedical materials, nanomedicine, ultraviolet spectra, visible spectra, transmission electron microscopy, atomic force microscopy, X‐ray chemical analysis, Fourier transform infrared spectra, electrokinetic effects, microorganisms, cellular biophysics, cancerOther keywords: antibacterial activity, antifungal activity, anticancer activity, stable colloidal silver nanoparticle, Mentha pulegium, plant extract, UV‐visible spectroscopy, transmission electron microscopy, atomic force microscopy, DLS, zetasizer, energy‐dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy, methanolic extract, aqueous extract, plate‐shaped silver nanoparticle, zeta potential, plasmon absorption maximum, organic compounds adsorption, biogenic silver nanoparticle, Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes, fluconazole‐resistant Candida albicans, MTT assay, HeLa cancer cell, MCF‐7 cancer cell, Ag  相似文献   

4.
Silver nanoparticles (AgNPs) were synthesised from aqueous Ag nitrate through a simple, competent and eco‐friendly method using the leaf extract of Ipomoea eriocarpa as reducing as well as capping agent. Ultraviolet–visible absorption spectroscopy was used to confirm the formation of AgNPs which displayed the substantiation of surface plasmon bands at 425 nm. The NPs were also characterised using Fourier transformer infrared spectroscopy, X‐ray diffraction method, transmission electron microscope and zeta potential. The characterisation study confirmed the formation of AgNPs, their spherical shape and average diameter of 12.85 ± 8.65 nm. Zeta potential value of −20.5 mV suggested that the AgNPs are stable in the suspension. The aqueous extract and the AgNPs were further screened for in vivo anti‐inflammatory activity using carrageenan‐induced paw edema in male Wistar rats. The study demonstrated that the AgNPs (1 ml kg−1) had a significant (p  < 0.05) anti‐edemic effect and inhibition was observed from the first hour (21.31 ± 1.34) until the sixth hour (52.67 ± 1.41), when the inhibitory effect was greatest and superior to the aqueous extract and the standard, diclofenac.Inspec keywords: silver, nanoparticles, nanofabrication, ultraviolet spectra, visible spectra, absorption coefficients, surface plasmons, Fourier transform infrared spectra, X‐ray diffraction, transmission electron microscopy, suspensions, drugs, nanomedicineOther keywords: biosynthesis, aqueous leaf extract, ipomoea eriocarpa, antiinflammatory effect, carrageenan‐induced paw edema, male Wistar rats, silver nanoparticles, aqueous nitrate, capping agent, ultraviolet‐visible absorption spectroscopy, surface plasmon band, Fourier transformer infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, zeta potential, spherical shape, suspension, aqueous extract, in vivo antiinflammatory activity, antiedemic effect, inhibitory effect, diclofenac, wavelength 425 nm, size 12.85 nm to 8.65 nm, Ag  相似文献   

5.
Background: Ovarian cancer is deadliest of fifth leading cause of death in women worldwide. This is due to advanced-stage disease rate associated with the development of chemoresistance. Hence, the current study emphasizes the process of synthesis of silver nanoparticles (AgNPs) from green chemistry method. Ficus krishnae is a perennial plant, native to India, used in folklore medicine to treat various diseases.

Objective: For the development of reliable, ecofriendly, less expensive process for the synthesis of AgNPs against bacterial and ovarian cancer.

Methodology: The synthesis of silver nanoparticles from stem bark of Ficus krishnae was carried out. The synthesized nanoparticles are subjected by UV-Vis spectrophotometer, scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis and FTIR analysis. The antibacterial efficacy also determined by disc diffusion method, MIC, CFU and growth curve. In vitro cytotoxicity effect of aqueous extract and AgFK nanoparticle in ovarian cancer cell line by MTT assay was performed.

Results: The formation of AgNPs was confirmed by UV-VIS spectroscopic absorbance shown that peak at 435?nm. XRD photograph has indicated the face-centered cubic structure of the synthesized AgNPs. SEM study demonstrated that the size from 160 to 260?nm with interparticle distance, whereas shape is spherical. The particle size were ranging from 15 to 28?nm determined by XRD pattern. The antibacterial and cytotoxicity activity of this nanoparticle has showed a potential activity when compared with standards.

Conclusion: The present study confirms that the biosynthesized AgNPs from Ficus krishnae stem bark extract have a great affiance as antibacterial and anticancer agent.  相似文献   

6.
In this study, the conversion of silver ions into ∼30.74 nm sized silver nanoparticles (AgNPs) was achieved in 30 min at a reaction temperature of 80–90°C in aqueous leaf extract of Artemisia afra. The synthesised AgNPs showed surface plasmon resonance in the range of 423–438 nm. Spherical and face‐centred cubic nanoparticles were confirmed by transmission electron microscope (TEM) and X‐ray diffraction (XRD) analysis, respectively. Fourier transform infra‐red (FTIR) results indicated that the obtained nanoparticles were stabilised and capped through the carbonyl and carboxylate ion groups possibly from flavonoids, terpenoids, phenolics and esters content of the extracts. In addition, the AgNPs were assessed for their biological potentials against some microbes and, also, their free radical scavenging ability was established. The AgNPs exhibited interesting antimicrobial and antioxidant properties better than the aqueous extract of A. afra. Inspec keywords: silver, transmission electron microscopy, ultraviolet spectra, visible spectra, surface plasmon resonance, antibacterial activity, X‐ray diffraction, microorganisms, nanoparticles, nanofabrication, Fourier transform infrared spectraOther keywords: silver nanoparticles, reaction temperature, surface plasmon resonance, face‐centred cubic nanoparticles, antioxidant properties, silver ion conversion, aqueous leaf extract, carboxylate ion group, antimicrobial properties, Artemisia afra, spherical nanoparticles, TEM, XRD, FTIR spectra, Ag, temperature 80 degC to 90 degC, time 30.0 min, free radical scavenging, esters, phenolics, terpenoids, flavonoids, carbonyl ion group  相似文献   

7.
An efficient protocol for synthesis of silver nanoparticles (AgNPs) using the combination of aqueous extract of Tinospora cordifolia leaves and 5 mM silver nitrate (AgNO3) solution was developed. This study revealed that bioactive compounds present in the extract function as stabilizing and capping agent for AgNPs. Scanning electron microscope and transmission electron microscope studies confirm the structure and surface morphology of the AgNPs. The size of synthesized AgNPs was in the range of 30–50 nm having spherical morphology. The crystalline nature of NPs was defined by the X-ray diffraction pattern. The AgNPs were found to be toxic against pathogenic bacteria such as Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), and Staphylococcus aureus (ATCC 29213) and against plant pathogenic fungi Fusarium oxysporum (MTCC 8608) and Sclerotinia sclerotiorum (MTCC 8785). The use of AgNPs as antibacterial and antifungal agent is advantageous over other methods for control of pathogenic microorganisms, and it can be of great importance in developing novel drugs for curing many lethal diseases.  相似文献   

8.
Green synthesis of silver nanoparticles (AgNPs) using Shivlingi (Bryonia laciniosa) seed extract was carried out. Characterisation of synthesised nanoparticles was accomplished through the optical absorption and photoluminescence spectrum, X‐ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. The XRD analysis further confirmed the size of nanoparticles ∼15 nm. TEM images revealed homogeneous spherical ∼10 nm Bryonia extract capped AgNPs. The biological studies indicated that both Bryonia seed extract and the nanoparticles lack anti‐microbial activity; however, the nanoparticles had better cytotoxicity and total antioxidant activity. The Lethal concentration (LC)50 value of water extract and the nanoparticles were found to be 1091 and 592 μg/ml, respectively. The lower LC50 of nanoparticles indicates that it is more cytotoxic than the crude extract. The results indicate that the Bryonia seed is safe to be used as a medicine and the formation of their nanoparticle has further enriched the chemical reactivity, energy absorption and biological mobility.Inspec keywords: silver, nanoparticles, nanomedicine, particle size, microorganisms, cellular biophysics, nanofabrication, photoluminescence, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectra, Raman spectra, antibacterial activity, biochemistryOther keywords: green synthesis, biological studies, Shivlingi seed extraction, Bryonia laciniosa, silver nanoparticles, optical absorption, photoluminescence spectrum, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, SEM, Fourier transform infrared spectroscopy, Raman spectroscopy, XRD analysis, nanoparticle size, TEM images, homogeneous spherical images, antioxidant activity, water extraction, chemical reactivity, energy absorption, biological mobility, Ag  相似文献   

9.
The aqueous extract of Chinese winter jujube (Ziziphus jujuba Mill. cv. Dongzao) was used as reducing and capping agents for the synthesis of silver nanoparticles (AgNPs) for the first time. The resulting AgNPs were characterised by UV/Visible (UV–Vis) spectroscopy, atomic force microscope, transmission electron microscopy, selected area electron diffraction, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray and Fourier transform infrared spectroscopy (FTIR). The colloidal solution of AgNPs gave a maximum UV–Vis absorbance at 446 nm. The synthesised nanoparticles were almost in the spherical shapes with an average size of 11.5 ± 4. 8 nm. FTIR spectra were applied to identify the functional groups which were possibly responsible for the conversion of metal ions into nanoparticles. The results showed that the prepared AgNPs were coated with the biomolecules in the extract. The biosynthesised AgNPs showed a remarkable catalytic activity at room temperature, and they also showed good antibacterial properties against Escherichia coli and Staphylococcus aureus.Inspec keywords: silver, nanoparticles, nanofabrication, antibacterial activity, biomedical materials, nanobiotechnology, scanning electron microscopy, X‐ray diffraction, transmission electron microscopy, ultraviolet spectra, visible spectra, X‐ray chemical analysis, Fourier transform infrared spectra, catalysisOther keywords: wavelength 446 nm, temperature 293 K to 298 K, Ag, Escherichia coli, Staphylococcus aureus, biomolecules, catalytic activity, metal ions, colloidal solution, FTIR spectra, UV‐vis absorbance, TEM, SEM, XRD, Fourier transform infrared spectroscopy, energy‐dispersive X‐ray spectroscopy, scanning electron microscopy, X‐ray diffraction, selected area electron diffraction, transmission electron microscopy, atomic force microscopy, UV‐visible spectroscopy, catalytic properties, antibacterial properties, Chinese winter jujube extract, silver nanoparticles, facile phyto‐mediated synthesis  相似文献   

10.
The biosynthesis of silver nanoparticles (AgNPs) has been proved to be a cost effective and environmental friendly approach toward chemical and physical methods. In the present study, biosynthesis of AgNPs was carried out using aqueous extract of Zea mays (Zm) husk. The initial colour change from golden yellow to orange was observed between 410 and 450 nm which confirmed the synthesis of AgNPs. Also, dynamic light scattering‐particle size analysis confirmed the average size to be 113 nm and zeta potential value of −28 kV. The morphology of synthesised Zm AgNPs displayed flower‐shaped structure, X‐ray diffraction pattern revealed the strongest peaks at 2θ = 38.6° and 64° which proved that the nanoparticle has the face centred crystalline structure. The Fourier transform infrared spectroscopy results showed strong absorption bands at 1394.53, 2980.02 and 2980.02 cm−1 due to the presence of alkynes, carboxylic acids, alcoholic and phenolic groups. The maximum zone of inhibition was observed against Salmonella typhi (22 mm) and Candida albicans (18 mm). The synthesised nanoparticles exhibited more free radical scavenging activity than the aqueous plant extract. This is the first report on the synthesis of AgNP from Zm husk, delivers the efficient and stable Zm AgNPs through simple feasible approach toward green biotechnology.Inspec keywords: silver, nanoparticles, nanofabrication, light scattering, particle size, X‐ray diffraction, crystal structure, Fourier transform infrared spectra, absorption coefficients, free radicalsOther keywords: green synthesis, silver nanoparticles, biosynthesis, environmental friendly approach, aqueous extract, Zea mays husk, colour change, golden yellow, dynamic light scattering‐particle size analysis, average size, zeta potential value, flower‐shaped structure, X‐ray diffraction pattern, face centred crystalline structure, Fourier transform infrared spectroscopy, absorption bands, alkynes, carboxylic acids, alcoholic groups, phenolic groups, Salmonella typhi, Candida albicans, free radical scavenging activity, aqueous plant extraction, green biotechnology, size 113 nm, wavelength 410 nm to 450 nm  相似文献   

11.
This paper describes green procedure for the synthesis of silver nanoparticles (AgNPs) using the extract of Calotropis procera flower. The aqueous extract of this flower has been used as green reducing and stabilizing agent. Parameters such as pH and reaction time were varied. Progress of the reaction has been monitored by surface plasmon resonance of AgNPs, which occur at 405 nm. Raman spectra revealed the unique surface enhancing property of synthesized AgNPs. XRD pattern of AgNPs confirms the crystallinity with fcc plane. The average particle size of synthesized AgNPs was found to be in the order of 35 nm. SEM analysis revealed well defined shape of AgNPs. SEM with EDX spectrum authenticated the presence of silver. FT-IR spectra indicate that synthesized AgNPs were capped with phytochemicals present in the extract. The cubical shape of AgNPs was obtained. This greener synthesis is achieved at room temperature and found to be reproducible.  相似文献   

12.
The utility of green silver nanoparticles (AgNPs) in veterinary medicine is steadily increasing as they have many therapeutic applications against pathogens and arthropods of livestock. In this study, green AgNPs using neem (N‐AgNPs), 2,3‐dehydrosalanol (2,3‐DHS‐AgNPs) and quercetin dihydrate (QDH‐AgNPs) were synthesised and characterised. Synthesised compounds were characterised by UV‐Vis spectroscopy and the peak absorbance was recorded at 370 nm for neem extract. For N‐AgNPs, 2,3‐DHS‐AgNPs and QDH‐AgNPs, the maximum absorbance peaks were at 430, 230 and 220 nm, respectively. The FTIR analysis confirmed the synthesis of green AgNPs. The XRD pattern of N‐AgNPs showed the peaks corresponding to whole spectra of 2 θ values ranging from 10–80. The relatively higher intensity of (111, 222) planes in face centred cubic crystalline structure supports the formation of synthesised AgNPs. In DLS analysis, the hydrodynamic diameter of neem leaf extract was found to be 259.8 nm, followed by 5.3, 6.7 and 261.8 nm for 2,3‐DHS‐AgNPs, N‐AgNPs and QDH‐AgNPs, respectively. Based on the transmission electron microscopy and scanning electron microscopy image analyses, confirmed the formation of N‐AgNPs, 2,3‐DHS‐AgNPs and QDH‐AgNPs. These eco‐friendly phyto‐AgNPs may be of use as an effective alternative to chemical control methods against the arthropods of livestock.Inspec keywords: nanoparticles, silver, nanomedicine, biomedical materials, nanofabrication, Fourier transform infrared spectra, ultraviolet spectra, visible spectra, X‐ray diffraction, light scattering, transmission electron microscopy, scanning electron microscopy, aggregation, veterinary medicineOther keywords: 2,3‐dehydrosalanol mediated silver nanoparticles, quercetin dihydrate mediated silver nanoparticles, therapeutic applications, green silver nanoparticles, veterinary medicine, Azadirachta indica, UV‐visible spectroscopy, Fourier transformed infrared analysis, X‐ray diffraction, (111) planes, (222) planes, face centred cubic crystalline structure, dynamic light scattering, hydrodynamic diameter, aqueous neem leaf extract, transmission electron microscopy, hexagonal shape, pencil head shape, cuboid shape, scanning electron microscopy, aggregation, arthropod infesting livestock, Ag, in‐vivo antiectoparasitic activity, in‐vitro antiectoparasitic activity  相似文献   

13.
Facile green synthesis of silver nanoparticles (AgNPs) using an aqueous extract of Carissa carandas (C. carandas) leaves was studied. Fabrication of AgNPs was confirmed by the UV–visible spectroscopy which gives absorption maxima at 420 nm. C. carandas leaves are the rich source of the bioactive molecules, acts as a reducing and stabilising agent in AgNPs, confirmed by Fourier transforms infrared spectroscopy. The field emission scanning electron microscope revealed the spherical shape of biosynthesised AgNPs. A distinctive peak of silver at 3 keV was determined by energy dispersive X‐ray spectroscopy. X‐ray diffraction showed the facecentred cubic structure of biosynthesised AgNPs and thermal stability was confirmed by the thermogravimetric analysis. Total flavonoid and total phenolic contents were evaluated in biosynthesised AgNPs. Biosynthesised AgNPs showed free radical scavenging activities against 2, 2‐diphenyl‐1‐picrylhydrazyl test and ferric reducing antioxidant power assay. In vitro cytotoxicity against hepatic cell lines (HUH‐7) and renal cell lines (HEK‐293) were also assessed. Finally, biosynthesised AgNPs were scrutinised for their antibacterial activity against methicillin‐resistant Staphylococcus aureus, Shigella sonnei, Shigella boydii and Salmonella typhimurium. This study demonstrated the biofabrication of AgNPs by using C. carandas leaves extract and a potential in vitro biological application as antioxidant, anticancer and antibacterial agents.Inspec keywords: antibacterial activity, biomedical materials, cancer, tumours, nanomedicine, silver, nanoparticles, reduction (chemical), nanofabrication, ultraviolet spectra, visible spectra, field emission scanning electron microscopy, Fourier transform infrared spectra, X‐ray chemical analysis, X‐ray diffraction, thermal stability, thermal analysis, free radical reactions, toxicology, cellular biophysics, microorganismsOther keywords: total phenolic contents, free radical scavenging activities, 2,2‐diphenyl‐1‐picrylhydrazyl test, ferric reducing antioxidant power assay, in vitro cytotoxicity, hepatic cell lines HUH‐7, renal cell lines HEK‐293, antibacterial activity, methicillin‐resistant Staphylococcus aureus, Shigella sonnei, Shigella boydii, Salmonella typhimurium, biofabrication, in vitro biological application, Ag, total flavonoid contents, thermogravimetric analysis, thermal stability, face‐centred cubic structure, X‐ray diffraction, energy dispersive X‐ray spectroscopy, distinctive peak, spherical shape, field emission scanning electron microscope, Fourier transforms infrared spectroscopy, stabilising agent, reducing agent, bioactive molecules, absorption maxima, UV‐visible spectroscopy, plant extract colour, antibacterial activities, anticancer activities, antioxidant activities, Carissa carandas, aqueous leaves extract, silver nanoparticles, structural characterisation, one‐pot green synthesis  相似文献   

14.
ABSTRACT

Following the emergence of resistant fungal pathogens, silver nanoparticles (AgNPs) biosynthesized by plants have been recognized as promising tools to combat parasitic fungi. This study evaluated the potency of Amaranthus retroflexus in producing AgNPs, followed by testing their antifungal effects. The AgNPs exhibited a maximum absorption at 430 nm through ultraviolet-visible spectroscopy, while the X-ray diffraction indicated that they were crystal in nature. Fourier transform infrared spectroscopy confirmed the conversion of Ag+ ions to AgNPs due to the reduction by capping material of plant extract. The transmission electron microscope analysis further revealed that the AgNPs were spherical ranging from 10 nm to 32 nm in size. The AgNPs at the concentrations of 50, 100, 200, and 400 μg/mL were applied to the growth of plant, mushroom, and human pathogenic fungi. The 50% minimum inhibitory concentrations (MIC50) against Macrophomina phaseolina, Alternaria alternata and Fusarium oxysporum were observed to be 159.80 ± 14.49, 337.09 ± 19.72, and 328.05 ± 13.29 μg/mL, respectively. However, no considerable inhibition was observed regarding Trichoderma harzianum or Geotrichum candidum. These findings may suggest A. retroflexus as a green solution for biosynthesizing AgNPs with potent antifungal activities against plant pathogenic fungi.  相似文献   

15.
To eliminate the elaborate processes employed in other non‐biological‐based protocols and low cost production of silver nanoparticles (AgNPs), this study reports biogenic synthesis of AgNPs using silver salt precursor with aqueous extract of Aspergillus fumigates MA. Influence of silver precursor concentrations, concentration ratio of fungal extract and silver nitrate, contact time, reaction temperature and pH are evaluated to find their effects on AgNPs synthesis. Ultraviolet–visible spectra gave surface plasmon resonance at 420 nm for AgNPs. Fourier transform infrared spectroscopy and X‐ray diffraction techniques further confirmed the synthesis and crystalline nature of AgNPs, respectively. Transmission electron microscopy observed spherical shapes of synthesised AgNPs within the range of 3–20 nm. The AgNPs showed potent antimicrobial efficacy against various bacterial strains. Thus, the results of the current study indicate that optimisation process plays a pivotal role in the AgNPs synthesis and biogenic synthesised AgNPs might be used against bacterial pathogens; however, it necessitates clinical studies to find out their potential as antibacterial agents.Inspec keywords: nanoparticles, microorganisms, cellular biophysics, silver, antibacterial activity, pH, surface plasmon resonance, ultraviolet spectra, visible spectra, X‐ray diffraction, Fourier transform infrared spectra, optimisation, nanomedicine, nanofabricationOther keywords: biogenic synthesis, optimisation, antibacterial efficacy, extracellular silver nanoparticles, fungal isolate Aspergillus fumigatus MA, nonbiological‐based protocols, silver salt precursor, fungal extract, silver nitrate, pH, ultraviolet‐visible spectra, surface plasmon resonance, Fourier transform infrared spectroscopy, X‐ray diffraction, crystalline nature, transmission electron microscopy, spherical shapes, potent antimicrobial efficacy, bacterial strains, optimisation process, bacterial pathogens, antibacterial agents, wavelength 420 nm, size 3 nm to 20 nm, Ag  相似文献   

16.
Biological routes of synthesising metal nanoparticles (NPs) using microbes have been gaining much attention due to their low toxicity and eco‐friendly nature. Pseudomonas aeruginosa JP2 isolated from metal contaminated soil was evaluated towards extracellular synthesis of silver NPs (AgNPs). Cell‐free extract (24 h) of the bacterial isolate was reacted with AgNO3 for 24 h in order to fabricate AgNPs. Preliminary observations were recorded in terms of colour change of the reaction mixture from yellow to greyish black. UV‐visible spectroscopy of the reaction mixture has shown a progressive increase in optical densities that correspond to peaks near 430 nm, depicting reduction of ionic silver (Ag+) to atomic silver (Ag0) thereby synthesising NPs. X‐ray diffraction spectra exhibited the 2θ values to be 38.4577° confirming the crystalline and spherical nature of NPs [9.6 − 26.7 (Ave. = 17.2 nm)]. Transmission electron microscopy finally confirmed the size of the particles varying from 5 to 60 nm. Moreover, rhamnolipids and proteins were identified as stabilising molecules for the AgNPs through Fourier transform‐infrared spectroscopy. Characterisation of bacterial crude and purified protein fractions confirmed the involvement of nitrate reductase (molecular weight 66 kDa and specific activity = 3.8 U/mg) in the Synthesis of AgNPs.Inspec keywords: microorganisms, silver, nanoparticles, enzymes, molecular biophysics, ultraviolet spectra, visible spectra, X‐ray diffraction, transmission electron microscopy, Fourier transform infrared spectra, catalysis, biochemistry, nanobiotechnologyOther keywords: catalytic protein, stabilising agents, Pseudomonas aeruginosa, metal nanoparticles, UV–visible spectroscopy, optical densities, ionic silver, atomic silver, X‐ray diffraction spectra, transmission electron microscopy, nitrate reductase, rhamnolipids, Fourier transform‐infrared spectroscopy, Ag  相似文献   

17.
Silver nanoparticles (AgNPs) have been extensively used as antibacterial agents, owing to their ease of preparation. In the present study, leaves extract of Canarium ovatum have been employed for the biosynthesis of silver nanoparticles (CO‐AgNPs). CO‐AgNPs were synthesised under very mild, eco‐friendly manner where the plant extract acted both as reducing and capping agent. These AgNPs were synthesised by taking into account several parameters, that included, time of reaction, concentration of AgNO3, amount of extract and temperature of reaction. The optimisation studies suggested efficient synthesis of CO‐AgNPs at 25°C when 1.5 mM AgNO3 was reduced with 1:20 ratio of plant extract for 40 min. Size determination studies done on dynamic light scattering and scanning electron microscope suggested of spherical shape nanoparticles of size 119.7 ± 7 nm and 50–80 nm, respectively. Further, characterisations were done by Fourier transform infrared and energy‐dispersive X‐ray spectroscopy to evaluate the functional groups and the purity of CO‐AgNPs. The antibacterial efficacy of CO‐AgNPs was determined against the bacterial strain Pseudomonas aeruginosa. As evident from disc diffusion method studies, CO‐AgNPs remarkably inhibited the growth of the tested microorganism. This study suggested that C. ovatum extract efficiently synthesises CO‐AgNPs with significant antibacterial properties and can be good candidates for therapeutics.Inspec keywords: antibacterial activity, nanoparticles, silver, nanofabrication, particle size, light scattering, scanning electron microscopy, Fourier transform infrared spectra, X‐ray chemical analysis, microorganisms, biomedical materials, nanomedicineOther keywords: antibacterial potential, silver nanoparticles, biosynthesis, Canarium ovatum leave extract, plant extract, reducing agent, capping agent, antibacterial agents, reaction time, reaction temperature, dynamic light scattering, scanning electron microscopy, spherical shape nanoparticles, Fourier transform infrared spectroscopy, functional groups, bacterial strain Pseudomonas aeruginosa, disc diffusion method, microorganism, energy‐dispersive X‐ray spectroscopy, temperature 25 degC, time 40 min, Ag  相似文献   

18.
The aim of the present research work was to synthesize silver nanoparticles (AgNPs) using Salacia chinensis plant extract and to evaluate its antibacterial activity. AgNPs were successfully synthesized and formation of AgNPs was confirmed by visual color change and UV (ultraviolet) spectroscopy. Prepared AgNPs were purified and characterized by using dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (SEM-EDAX), and transmission electron microscopy (TEM). UV peak at 434 nm confirmed the formation of AgNPs. DLS studies showed that AgNPs size prepared in all conditions were in the range of 100–200 nm. XRD studies revealed crystalline nature of AgNPs. EDAX studies confirmed the presence of silver in colloidal dispersion and images were recorded by using SEM and TEM. Synthesized AgNPs were found to be effective against Staphylococcus aureus and Pseudomonas aeruginosa. In conclusion, AgNPs could serve as a good alternative in treatment of bacterial infections in this era of multidrug resistance.  相似文献   

19.
The development of reliable and green methods for the fabrication of metallic nanoparticles (NPs) has many advantages in the field of nanotechnology. In this direction, the present work describes an eco‐friendly and cost‐effective protocol for the production of silver NPs (AgNPs) using an aqueous extract of Quercus semecarpifolia leaves. Different techniques were carried out for the characterisation of the synthesised AgNPs. The ultraviolet–visible spectroscopic analysis showed the highest absorbance peak at 430 nm. The particle size and structure were confirmed by scanning electron microscopy as well as transmission electron microscopy (TEM) analysis. From TEM imaging, it was revealed that the formed particles were spherical with an average size of 20–50 nm. The crystalline nature of the NPs was determined by X‐ray powder diffraction patterns. Thermogravimetry and differential thermal analysis were also evaluated by a temperature increment from 100 to 1000°C. Bio‐inspired synthesis of AgNPs was performed for their pharmacological evaluation in relation to the activities of the crude methanolic, n ‐hexane, chloroform, ethyl acetate, and aqueous extracts. Good cytotoxic activity was exhibited by the green‐synthesised AgNPs (77%). Furthermore, the AgNPs were found to exhibit significant antioxidant activity at 300 μg/ml (82%). The AgNPs also exhibited good phytotoxic potential (75%).Inspec keywords: scanning electron microscopy, toxicology, visible spectra, particle size, nanofabrication, nanomedicine, transmission electron microscopy, silver, ultraviolet spectra, differential thermal analysis, nanoparticles, X‐ray diffraction, botany, biochemistry, cellular biophysicsOther keywords: green synthesis, biological evaluation, plant‐based silver nanoparticles, reliable methods, metallic nanoparticles, eco‐friendly cost‐effective protocol, silver NPs, ultraviolet–visible spectroscopic analysis, highest absorbance peak, particle size, structure, transmission electron microscopy analysis, TEM imaging, crystalline nature, X‐ray powder diffraction patterns, differential thermal analysis, pharmacological evaluation, aqueous extracts, good cytotoxic activity, significant antioxidant activity, AgNPs exhibited good phytotoxic potential, bio‐inspired synthesis, Quercus semecarpifolia Smith aqueous leaf extract, scanning electron microscopy, thermogravimetry, crude methanolic, n‐hexane, chloroform, ethyl acetate, phytotoxic potential, haemagglutination activity, size 20.0 nm to 50.0 nm, wavelength 430.0 nm, temperature 100 degC to 1000 degC, Ag  相似文献   

20.
Abstract

Silver nanoparticles (AgNPs) have been widely used in diverse fields due to their superior properties. Currently the biosynthesis of AgNPs is in the limelight of modern nanotechnology because of its green properties. However, relatively low yield and inefficiency diminish the prospect of applying these biosynthesized AgNPs. In this work, a rapid mass AgNP biosynthesis method using the cell-free extract of a novel bacterial strain, Lysinibacillus sphaericus MR-1, which has been isolated from a chemical fertilizer plant, is reported. In addition, the optimum synthesis conditions of AgNPs were investigated. The optimum pH, temperature, dosage, and reaction time were 12, 70 °C, 20 mM AgNO3, and 75 min, respectively. Finally, AgNPs were characterized by optical absorption spectroscopy, zeta potential and size distribution analysis, x-ray diffraction, electron microscopy, and energy-dispersive x-ray spectroscopy. The results revealed that these biosynthesized AgNPs were bimolecular covered, stable, well-dispersed face centered cubic (fcc) spherical crystalline particles with diameters in the range 5–20 nm. The advantages of this approach are its simplicity, high efficiency, and eco-friendly and cost-effective features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号