首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reichardt J 《Applied optics》2000,39(33):6058-6071
A formalism for the error treatment of lidar ozone measurements with the Raman differential absorption lidar technique is presented. In the presence of clouds wavelength-dependent multiple scattering and cloud-particle extinction are the main sources of systematic errors in ozone measurements and necessitate a correction of the measured ozone profiles. Model calculations are performed to describe the influence of cirrus and polar stratospheric clouds on the ozone. It is found that it is sufficient to account for cloud-particle scattering and Rayleigh scattering in and above the cloud; boundary-layer aerosols and the atmospheric column below the cloud can be neglected for the ozone correction. Furthermore, if the extinction coefficient of the cloud is ?0.1 km(-1), the effect in the cloud is proportional to the effective particle extinction and to a particle correction function determined in the limit of negligible molecular scattering. The particle correction function depends on the scattering behavior of the cloud particles, the cloud geometric structure, and the lidar system parameters. Because of the differential extinction of light that has undergone one or more small-angle scattering processes within the cloud, the cloud effect on ozone extends to altitudes above the cloud. The various influencing parameters imply that the particle-related ozone correction has to be calculated for each individual measurement. Examples of ozone measurements in cirrus clouds are discussed.  相似文献   

2.
The availability of new laser sources that are tunable in the IR spectral region opens new perspectives for differential absorption lidar (DIAL) measurements. A region of particular interest is located in the near IR, where some of the atmospheric pollutants have absorption lines that permit monitoring of emissions from industrial plants and in urban areas. In DIAL measurements, the absorption lines for the species to be measured must be carefully chosen to prevent interference from other molecules, to minimize the dependence of the absorption cross section on temperature, and to optimize the measurements with respect to the optical depth. We analyze the influence of these factors and discuss a set of criteria for selecting the best pairs of wavelengths (lambda(on) and lambda(off)) to be used in DIAL measurements of several molecular species (HCl, CO, CO(2), NO(2), CH(4), H(2)O, and O(2)). Moreover, a sensitivity study has been carried out for selected lines in three different regimes: clean air, urban polluted air, and emission from an incinerator stack.  相似文献   

3.
T Li  X Fang  W Liu  SY Gu  X Dou 《Applied optics》2012,51(22):5401-5411
We report here a narrowband high-spectral resolution sodium temperature/wind lidar recently developed at the University of Science and Technology of China (USTC) in Hefei, China (31.5?°N, 117?°E). Patterned after the Colorado State University (CSU) narrowband sodium lidar with a dye laser-based transmitter, the USTC sodium temperature/wind lidar was deployed with a number of technical improvements that facilitate automation and ease of operation; these include a home constructed pulsed dye amplifier (PDA), a beam-steering system, a star-tracking program, and an electronic timing control. With the averaged power of ~1.2 W output from PDA and the receiving telescope diameter of 0.76?m, our lidar system has a power aperture product of ~0.55 Wm2 and is comparable to the CSU and the University of Illinois at Urbana-Champaign (UIUC) sodium lidar systems. The uncertainties of typical measurements induced by photon noise and laser locking fluctuation for the temperature and wind with a 2?km vertical and 15?min temporal resolutions under the nighttime clear sky condition are estimated to be ~1.0 K and ~1.5 m/s, respectively, at the sodium peak (e.g., 91?km), and 8?K and 10 m/s, respectively, at both sodium layer edges (e.g., 81?km and 105?km). The USTC narrowband sodium lidar has been operated regularly during the night since November 2011. Using the initial data collected, we demonstrate the reliability and suitability of these high resolution and precision datasets for studying the wave perturbations in the mesopause region.  相似文献   

4.
The results of lidar measurements on laboratory-scaled cloud models are presented. The lidar system was based on a picosecond laser source and a streak camera. The cloud was simulated by a homogeneous aqueous suspension of calibrated microspheres. Measurements were repeated for different concentrations of diffusers and for different values of the receiver angular field of view. The geometric situation was similar to one of an actual lidar sounding a 300-m-thick cloud at a distance of 1200 or 7800 m. The results show how the effect of multiple scattering depends on the extinction coefficient of the sounded medium and on the geometric parameters. The depolarization introduced by multiple scattering was also investigated. Measurements were carried out in well-controlled conditions. The results can thus be useful to validate the accuracy of numerical or analytical procedures that have been developed to study multiple-scattering contribution in lidar returns.  相似文献   

5.
Analysis of lidar backscatter profiles in optically thin clouds   总被引:3,自引:0,他引:3  
Young SA 《Applied optics》1995,34(30):7019-7031
The solution of the lidar equation for profiles of backscatter and extinction in optically thin clouds is constrained by values of the cloud transmittance determined from the elastically scattered lidar signals below and above the cloud. The method is extended to those cases in which an aerosol layer lies below or above the cloud layer. Examples are given in both cases. An analytical expression for the average lidar ratio in the cloud is derived for those cases in which molecular scattering is significant.  相似文献   

6.
7.
Lidar backscatter from clouds in the Delft University of Technology experiment is complicated by the fact that the transmitter has a narrow beam width, whereas the receiver has a much wider one. The issue here is whether reception of light scattered incoherently by cloud particles can contribute appreciably to the received power. The incoherent contribution can come from within as well as from outside the transmitter beam but in any case is due to at least two scattering processes in the cloud that are not included in the coherent forward scatter that leads to the usual exponentially attenuated contribution from single-particle backscatter. It is conceivable that a sizable fraction of the total received power within the receiver beam width is due to such incoherent-scattering processes. The ratio of this contribution to the direct (but attenuated) reflection from a single particle is estimated here by means of a distorted-Born approximation to the wave equation (with an incident cw monochromatic wave) and by comparison of the magnitude of the doubly scattered to that of the singly scattered flux. The same expressions are also obtained from a radiative-transfer formalism. The ratio underestimates incoherent multiple scattering when it is not small. Corrections that are due to changes in polarization are noted.  相似文献   

8.
9.
Analysis of the receiver response in lidar measurements   总被引:1,自引:0,他引:1  
We report on the calculation of the effective telescope area in lidar applications by a ray-tracing approach. This method allows one to consider the true experimental working conditions and hence to obtain accurate values of the effective telescope area as a function of the height. This in turn allows the retrieval of the signal from the ranges where the overlap function is not constant (e.g., lower ranges), thus increasing the useful range interval. Moreover, we show that the spherical mirrors are more appropriate than the parabolic ones for most of the lidar measurements, although a particular alignment procedure, such as the one we describe, must be used.  相似文献   

10.
11.
A polarization lidar operating at 532 nm was converted into an automatic, polarimetric lidar capable of measuring the entire Stokes vector of backscattered light and its derived quantities. Among these quantities, circular and linear depolarizations were studied as tools for investigating the presence of anisotropic scattering media. Isotropic scatterers show a simple relationship between linear and circular depolarization, a relation that we confirm theoretically and experimentally. Deviations from this relation, which are possible in the presence of anisotropic scatterers such as horizontally oriented ice plates when they are observed with a slant lidar, were studied both numerically and experimentally.  相似文献   

12.
Polarization characteristics of signals of a monostatic lidar intended for sensing of homogeneous ice crystal clouds are calculated by the Monte Carlo method. Clouds are modeled as monodisperse ensembles of randomly oriented hexagonal ice crystals. The polarization state of multiply scattered lidar signal components is analyzed for different scattering orders depending on the crystal shapes and sizes as well as on the optical and geometrical conditions of observation. Light-scattering phase matrices (SPMs), calculated by the beam splitting method (BSM), are used as input data for solving the vector radiative transfer equation. The principles of the BSM method are briefly described, and the SPM components are given for hexagonal ice plates and columns of different sizes and linearly polarized incident radiation with the wavelength lambda = 0.55 microm.  相似文献   

13.
In order to determine the performance of standoff sensors against agents, there is a need to develop methods to characterize the optical properties of biological warfare agents. The goal of this work is to develop a methodology that would allow the characterization of agent optical cross sections from the UV to the longwave IR. The present work demonstrates an optical measurement architecture based on lidar technology, allowing the measurement of backscatter and depolarization ratio from biological aerosols (either simulants or agents) released in a refereed, 1m3 chamber. Measured results on simulant materials are calibrated and compared to theoretical simulations of the cross sections.  相似文献   

14.
Wu Y  Gan CM  Cordero L  Gross B  Moshary F  Ahmed S 《Applied optics》2011,50(21):3987-3999
Calibration is essential to derive aerosol backscatter coefficients from elastic scattering lidar. Unlike the visible UV wavelengths where calibration is based on a molecular reference, calibration of the 1064 nm lidar channel requires other approaches, which depend on various assumptions. In this paper, we analyze two independent calibration methods which use (i) low-altitude water phase clouds and (ii) high cirrus clouds. In particular, we show that to achieve optimal performance, aerosol attenuation below the cloud base and cloud multiple scattering must be accounted for. When all important processes are considered, we find that these two independent methods can provide a consistent calibration constant with relative differences less than 15%. We apply these calibration techniques to demonstrate the stability of our lidar on a monthly scale, along with a natural reduction of the lidar efficiency on an annual scale. Furthermore, our calibration procedure allows us to derive consistent aerosol backscatter coefficients and angstrom coefficient profiles (532-1064 nm) along with column extinction-to-backscatter ratios which are in good agreement with sky radiometer inversions.  相似文献   

15.
16.
A shape classification technique for cirrus clouds that could be applied to future spaceborne lidars is presented. A ray-tracing code has been developed to simulate backscattered and depolarized lidar signals from cirrus clouds made of hexagonal-based crystals with various compositions and optical depth, taking into account multiple scattering. This code was used first to study the sensitivity of the linear depolarization rate to cloud optical and microphysical properties, then to classify particle shapes in cirrus clouds based on depolarization ratio measurements. As an example this technique has been applied to lidar measurements from 15 mid-latitude cirrus cloud cases taken in Palaiseau, France. Results show a majority of near-unity shape ratios as well as a strong correlation between shape ratios and temperature: The lowest temperatures lead to high shape ratios. The application of this technique to space-borne measurements would allow a large-scale classification of shape ratios in cirrus clouds, leading to better knowledge of the vertical variability of shapes, their dependence on temperature, and the formation processes of clouds.  相似文献   

17.
Coherent Doppler lidar measurements of winds in the weak signal regime   总被引:1,自引:0,他引:1  
In the weak signal regime coherent Doppler lidar velocity estimates are characterized by a localized distribution around the true mean velocity and a uniform distribution of random outliers over the velocity search space. The performance of velocity estimators is defined by the standard deviation of the good estimates around the true mean velocity and the fraction of random outliers. The quality of velocity estimates is improved with pulse accumulation. The performance of velocity estimates from two different coherent Doppler lidars in the weak signal regime is compared with the predictions of computer simulations for pulse accumulation from 1 to 100 pulses.  相似文献   

18.
The relation between the orientation of particles in ice-crystal clouds and backscattering phase matrices (BSPMs) is considered. Parameters characterizing the predominant orientation of particles in the azimuthal direction and in the horizontal position are presented. The parameters are expressed through BSPM elements. A technique for measuring BSPM elements with lidar is described. Examples of some measurements are presented along with a statistical generalization of the results from more than 400 BSPM measurements. It is found that the orientation of coarse particles with large diameters in an azimuthal direction and in a horizontal position is more probable than in a random direction. However, the orientation of large particles is often masked by small particles that are not subject to the effect of orienting factors. Thus the mean parameters characterizing the state of orientation of particles in clouds as a whole correspond to weak orientation. It is supposed that the orientation of particles in the azimuthal direction is caused by wind-velocity pulsations.  相似文献   

19.
Devara PC  Raj PE  Pandithurai G 《Applied optics》1995,34(21):4416-4425
The scattering properties of aerosols over a tropical urban station, Pune, India, (18° 32' N, 73° 51' E, 559 m above mean sea level), are studied with a bistatic, multiwavelength, continuous-wave, argon-ion lidar. The scattered-intensity profiles (up to 1000 m above ground level) measured at four wavelengths (0.4765, 0.4880, 0.4965, and 0.5145 μm) of the laser during November 1987-March 1990 revealed certain spectral dependence, in conformity with the Mie theory of aerosol particles. Methods for retrieving the bulk as well as the height variation of aerosol-size distribution from the inversion of angular distribution of scattered-light-intensity measurements from a constant altitude and scattered-intensity verticalprofile measurements at different wavelengths are explained. Results obtained from these approaches are presented and compared with results reported by other investigators. The deviations in the results are discussed in relation to the assumptions involved and the terrain-atmospheric conditions at the experimental station. It is found that the aerosol-size-distribution parameter is altitude dependent beside its dependence on refractive index and wavelength of incident radiation. The results of the study suggest that the information content from bistatic, multiwavelength laser scattering measurements is useful for inferring aerosol-size distribution.  相似文献   

20.
We focus on improvement of the retrieval of optical properties of cirrus clouds by combining two lidar methods. We retrieve the cloud's optical depth by using independently the molecular backscattering profile below and above the cloud [molecular integration (MI) method] and the backscattering profile inside the cloud with an a priori effective lidar ratio [particle integration (PI) method]. When the MI method is reliable, the combined MI-PI method allows us to retrieve the optimal effective lidar ratio. We compare these results with Raman lidar retrievals. We then use the derived optimal effective lidar ratio for retrieval with the PI method for situations in which the MI method cannot be applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号