首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Pollen used to track structural and functional evolution in plants as well as to investigate the problems relative to plant classification. Pollen characters including ornamentation, shape, apertural pattern, pollen symmetry, colpus length, width, and margins used to detect the similarities and dissimilarities between genera and also species of the same genus. In this study pollen features of 20 monocot species belonging to 15 genera of the Amaryllidaceae, Asparagaceae, Iridaceae, Ixioliriaceae, Liliaceae, and Xanthorrhoeaceae were studied using scanning electron microscopy (SEM) and light microscopy (LM). In this study two species that is Zephyranthes citrina and Tulbaghia violacea were reported for the first time from Pakistan. Pollen grains were visualized with LM. Non‐acetolyzed and acetolyzed pollen were examined using SEM. A taxonomic key was developed to highlight the variation in pollen features in order to make their systematic application for correct species identification.  相似文献   

2.
Although electron beams with energies of a few keV can excite fluorescent X-ray production from solids, ion beams of comparable energy cannot do so. The reason for this situation is that it is the velocity of the incident particle, rather than its energy, which determines whether an ionization event can be generated.  相似文献   

3.
    
A novel algorithm has been developed and validated to isolate individual papermaking fibres in micro‐computed tomographic images of paper handsheets as a first step to characterize the structure of the paper. The three‐step fibre segmentation algorithm segments the papermaking fibres by (i) tracking the hollow inside the fibres via a modified connected component methodology, (ii) extracting the fibre walls using a distance transform and (iii) labelling the fibres through collapsed sections by a final refinement step. Furthermore, postprocessing algorithms have been developed to calculate the length and coarseness of the segmented fibres. The fibre segmentation algorithm is the first ever reported method for the automated segmentation of the tortuous three‐dimensional morphology of papermaking fibres within microstructural images of paper handsheets. The method is not limited to papermaking fibres, but can be applied to any material consisting of tortuous and hollow fibres.  相似文献   

4.
X-ray microscopy is a form of high resolution radiography that uses low-energy X-rays (≤10 keV) to enhance the contrast between light elements such as hydrogen, carbon, nitrogen and oxygen. As performed on compact laboratory equipment the technique can achieve spatial resolutions of roughly 1 μm in virtually any material given that the specimen is sufficiently thin (typically 0·2–2 mm) to be adequately transparent to low-energy X-rays. Notwithstanding that the technique has lately found favour in biomedical radiology, its considerable potential in other fields, notably the materials sciences, remains largely unexploited. The scope and potential of laboratory X-ray microscopy in the materials sciences is demonstrated here by its application to ceramics, elastomers, coal-chars and reinforced composites. In all cases the technique provided valuable microstructural characterization often unobtainable by any other non-destructive method. These examples demonstrate that laboratory X-ray microscopy offers much to the materials sciences and deserves a wider application than is current.  相似文献   

5.
    
Prasad MS  Joy DC 《Scanning》2003,25(4):210-215
The absolute efficiency of generation of a selection of K, L, and M- x-ray lines has been measured as a function of the incident electron beam energy. At an overvoltage U=2 this efficiency falls within the range 1E-4 to 1E-7, with K-lines being highest and L-Lines usually being the lowest. It is shown that for all three families of lines the efficiency has a functional variation which has the form A. (U- 1)n, as first suggested by Compton and Allison, where A and n are constants. Values of A and n for the K, L, and M shells are tabulated. The smoothly varying behavior of the efficiency makes it well suited for analytical use and spectrum simulation purposes.  相似文献   

6.
This paper concerns an important aspect of current developments in medical and biological imaging: the possibility for imaging soft tissue at relatively high resolution in the micrometer range or better, without tedious and/or entirely destructive sample preparation. Structures with low absorption contrast have been visualized using in-line phase contrast imaging. The experiments have been performed at the Advanced Photon Source, a third generation source of synchrotron radiation. The source provides highly coherent X-ray radiation with high photon flux (>10(14) photons/s) at high photon energies (5-70 keV). Thick gerbil cochlear slices have been imaged and were compared with those obtained by light microscopy. Furthermore, intact gerbil cochleae have been imaged to identify the soft tissue structures involved in the hearing process. The present experimental approach was essential for visualizing the inner ear structures involved in the hearing process in an intact cochlea.  相似文献   

7.
In this paper, an application of contact microradiography with soft X-rays for detecting the uptake site of heavy metal in the whole plant leaves is investigated. The X-ray source is a laser-plasma one based on an Nd:glass laser. The soft X-ray radiation emitted from the plasma laser targets of magnesium, iron, and copper can be strongly absorbed in the leaves' regions rich in iron, magnesium, and copper. This absorbance could point to structures in the leaves where these heavy elements are found. In this work, leaves treated with copper sulfate diluted in water at 1, 2, and 5% were imaged by using a copper target, in order to evaluate differences with untreated control leaves. Our results showed that this methodology highlighted the presence of copper in the treated leaves. This new methodology should detect heavy element pollutants inside plants and it should also be a useful analytic tool in phytoremediation studies.  相似文献   

8.
This study was performed to observe microstructures of the rat lung, using a synchrotron radiation beam and to compare findings with histological observations. X-ray refraction images from ex-vivo ventilating rat lung were obtained with an 8 KeV monochromatic beam and 20-mum thick CsI(Tl) scintillation crystal. The visual image was magnified using a 20x microscope objective and captured using an analog CCD camera. Obtained images were compared with conventional light microscopic findings from the same tissue. Pulmonary microstructures, including alveolar ducts, alveolar sacs, alveoli, alveolar walls, and perialveolar capillary networks were clearly identified with spatial resolution of as much as 1.2 mum and had good correlation with conventional light microscopic findings. The shape of alveoli appeared more round in SR images than in the light microscopic images. The results suggest that X-ray microscopy study of the lung using synchrotron radiation demonstrates the potential for clinically relevant microstructure of lung tissue without sectioning and fixation.  相似文献   

9.
    
In this paper, the use of lithium fluoride (LiF) as imaging radiation detector to analyse living cells by single‐shot soft X‐ray contact microscopy is presented. High resolved X‐ray images on LiF of cyanobacterium Leptolyngbya VRUC135, two unicellular microalgae of the genus Chlamydomonas and mouse macrophage cells (line RAW 264.7) have been obtained utilizing X‐ray radiation in the water window energy range from a laser plasma source. The used method is based on loading of the samples, the cell suspension, in a special holder where they are in close contact with a LiF crystal solid‐state X‐ray imaging detector. After exposure and sample removal, the images stored in LiF by the soft X‐ray contact microscopy technique are read by an optical microscope in fluorescence mode. The clear image of the mucilaginous sheath the structure of the filamentous Leptolyngbya and the visible nucleolus in the macrophage cells image, are noteworthiness results. The peculiarities of the used X‐ray radiation and of the LiF imaging detector allow obtaining images in absorption contrast revealing the internal structures of the investigated samples at high spatial resolution. Moreover, the wide dynamic range of the LiF imaging detector contributes to obtain high‐quality images. In particular, we demonstrate that this peculiar characteristic of LiF detector allows enhancing the contrast and reveal details even when they were obscured by a nonuniform stray light.  相似文献   

10.
    
This article reports on the utilization of X-ray microradiography and laser induced breakdown spectroscopy (LIBS) techniques for investigation of the metal accumulation in different part of leaf samples. The potential of the LIBS-analysis for finding the proper plant species for phytoremediation is compared with the results of microradiography measurements at the HERCULES source at ENEA, Rome (Italy) and X-ray microradiography experiments at the ELETTRA Synchrotron, Trieste (Italy).  相似文献   

11.
    
Three-dimensional (3-D) imaging of fluorescence resonance energy transfer (FRET) in human cells under two-photon excitation was demonstrated in this study. A sample was prepared by expressing a donor and an acceptor in living cells and using an antibody to secure the proximity of contact between the donor and the acceptor. The quenching of fluorescence emission of a donor in the double-labelled cells indicates the presence of FRET that occurred in these living cells. Because of the quadratic relation of the excitation power, 3-D localisation of FRET becomes possible.  相似文献   

12.
13.
    
Transmission electron microscopy (TEM) provides sub‐nanometre‐scale details in volumetric samples. Samples such as pathology tissue specimens are often stained with a metal element to enhance contrast, which makes them opaque to optical microscopes. As a result, it can be a lengthy procedure to find the region of interest inside a sample through sectioning. We describe micro‐CT scouting for TEM that allows noninvasive identification of regions of interest within a block sample to guide the sectioning step. In a tissue pathology study, a bench‐top micro‐CT scanner with 10 μm resolution was used to determine the location of patches of the mucous membrane in osmium‐stained human nasal scraping samples. Once the regions of interest were located, the sample block was sectioned to expose that location, followed by ultra‐thin sectioning and TEM to inspect the internal structure of the cilia of the membrane epithelial cells with nanometre resolution. This method substantially reduced the time and labour of the search process from typically 20 sections for light microscopy to three sections with no added sample preparation.  相似文献   

14.
    
Microenergy dispersive X‐ray fluorescence (μ‐EDXRF) spectroscopy and scanning electron microscopy (SEM) were used to test the hypothesis that zirconia modified glass ionomer cement (GIC) could improve resistance to erosion‐abrasion to a greater extent than conventional cement. Bovine enamel (n = 40) and dentin (n = 40) samples were prepared with cavities, filled with one of the two restorative materials (GIC: glass‐ionomer cement or ZrGIC: zirconia‐modified GIC). Furthermore, the samples were treated with abrasion‐saliva (AS) or abrasion‐erosion cycles (AE). Erosive cycles (immersion in orange juice, three times/day for a duration of 1 min over a 5 day period) and/or abrasive challenges (electric toothbrush, three times/day for a duration of 1 min over a 5 day period) were performed. Positive mineral variation (MV%) on the enamel after erosion‐abrasion was observed for both materials (p < 0.05), whereas a negative MV% on the dentin was observed for both materials and treatments (p < 0.05). The SEM images showed clear enamel loss after erosion‐abrasion treatment and material degradation was greater in GIC_AE compared to those of the other groups. Toothbrush abrasion showed a synergistic effect with erosion on substance loss of bovine enamel, dentin, GIC, and ZrGIC restorations. Zirconia addition to the GIC powder improved the resistance to abrasive‐erosive processes. The ZrGIC materials may find application as a restorative material due to improved resistance as well as in temporary restorations and fissure sealants.  相似文献   

15.
    
The soft X‐ray microscope at the Lawrence Berkeley National Laboratory was developed for visualization of biological tissue. Soft X‐ray microscopy provides high‐resolution visualization of hydrated, non‐embedded and non‐sectioned cells and is thus potentially an alternative to transmission electron microscopy. Here we show for the first time soft X‐ray micrographs of structures isolated from the guinea‐pig inner ear. Sensory outer hair cells and supporting pillar cells are readily visualized. In the hair cells, individual stereocilia can easily be identified within the apical hair bundle. The underlying cuticular plate is, however, too densely composed or too thick to be clearly visualized, and thus appears very dark. The cytoplasmic structures protruding from the cuticular plates as well as the fibrillar material surrounding and projecting from the cell nuclei can be seen. In the pillar cells the images reveal individual microtubule bundles. Soft X‐ray images of the acellular tectorial membrane and thin two‐layered Reissner's membrane display a level of resolution comparable to low‐power electron microscopy.  相似文献   

16.
按照生物样品各分辨单元具有多种透过率的特点,设计了一个多衬度的台阶状蛋白质模型,根据曝光量与衬度,信噪比,抗蚀膜性能的关系,确定了曝光量。同时模拟样品模型各台阶的真实成像条件,测量了各台阶所对应的抗蚀膜显影速率曲线,对显影条件作了定量分析。将曝光量,显影条件,与分辨率紧密结合起来,找到了一种较好的实验方法。  相似文献   

17.
按照生物样品各分辨单元具有多种透过率的特点,设计了一个多衬度的台阶状蛋白质模型,模拟各台阶的真实成像条件,测量了各台阶所对应的抗蚀膜显影速率曲线,对显影条件作了定量分析,并将显影条件与分辨率紧密结合起来,找到了一种较好的定量确定显影条件的方法。  相似文献   

18.
    
Several dedicated commercial lab‐based micro‐computed tomography (μCT) systems exist, which provide high‐resolution images of samples, with the capability to also deliver in‐line phase contrast. X‐ray phase contrast is particularly beneficial when visualizing very small features and weakly absorbing samples. The raw measured projections will include both phase and absorption effects. Extending our previous work that addressed the optimization of experimental conditions at the commercial ZEISS Xradia 500 Versa system, single‐distance phase‐contrast imaging is demonstrated on complex biological and material samples. From data captured at this system, we demonstrate extraction of the phase signal or the correction of the mixed image for the phase shift, and show how this procedure increases the contrast and removes artefacts. These high‐quality images, measured without the use of a synchrotron X‐ray source, demonstrate that highly sensitive, micrometre‐resolution imaging of 3D volumes is widely accessible using commercially advanced laboratory devices.  相似文献   

19.
    
Purpose: This study evaluated and compared in vitro the microstructure and mineral composition of permanent and deciduous teeth's dental enamel. Methods: Sound third molars (n = 12) and second primary molars (n = 12) were selected and randomly assigned to the following groups, according to the analysis method performed (n = 4): Scanning electron microscopy (SEM), X‐Ray diffraction (XRD) and Energy dispersive X‐ray spectrometer (EDS). Qualitative and quantitative comparisons of the dental enamel were done. The microscopic findings were analyzed statistically by a nonparametric test (Kruskal‐Wallis). The measurements of the prisms number and thickness were done in SEM photomicrographs. The relative amounts of calcium (Ca) and phosphorus (P) were determined by EDS investigation. Chemical phases present in both types of teeth were observed by the XRD analysis. Results: The mean thickness measurements observed in the deciduous teeth enamel was 1.14 mm and in the permanent teeth enamel was 2.58 mm. The mean rod head diameter in deciduous teeth was statistically similar to that of permanent teeth enamel, and a slightly decrease from the outer enamel surface to the region next to the enamel‐dentine junction was assessed. The numerical density of enamel rods was higher in the deciduous teeth, mainly near EDJ, that showed statistically significant difference. The percentage of Ca and P was higher in the permanent teeth enamel. Conclusions: The primary enamel structure showed a lower level of Ca and P, thinner thickness and higher numerical density of rods. Microsc. Res. Tech., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
    
Transmission X‐ray microscopy (TXM) is a rapidly developing technique with the capability of nanoscale three dimensional (3D) real‐space imaging. Combined with the wide range in energy tunability from synchrotron sources, TXM enables the retrieval of 3D microstructural information with elemental/chemical sensitivity that would otherwise be inaccessible. The differential absorption contrast above and below absorption edges has been used to reconstruct the distributions of different elements, assuming the absorption edges of the interested elements are fairly well separated. Here we present an “Absorption Correlation Tomography” (ACT) method based on the correlation of the material absorption across multiple edges. ACT overcomes the significant limitation caused by overlapping absorption edges, significantly expands the capabilities of TXM, and makes it possible for fully quantitative nano‐scale 3D structural investigation with chemical/elemental sensitivity. The capability and robustness of this new methodology is demonstrated in a case study of an important type of rare earth magnet (Nd2Fe14B). Microsc. Res. Tech. 76:1112–1117, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号