首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of mRNA encoding plasma membrane calcium ATPase (PMCA) subunit isoforms (1-4) and splice variants was examined in the adult and developing rat cochlea by PCR and in situ hybridization. High levels of PMCA mRNA expression were observed in the neurons of the spiral ganglion, and in hair cells. Spiral ganglion neurons expressed PMCA 1-3 beginning in embryonic development, reaching high levels shortly after birth, and continuing into adulthood. Inner hair cells expressed PMCA 1 at moderate levels from birth to the time of onset of cochlear function on postnatal day 12, and strongly from then until adulthood. Outer hair cells expressed PMCA 2 at high levels from shortly after birth through adulthood. The data suggest that the calcium clearance requirements of inner and outer hair cells are distinct. PMCA 2 is the isoform with the highest affinity for calmodulin, and has also been associated with high levels of inositol triphosphate. Its presence in outer hair cells suggests that regulation of the enzyme by calmodulin may be particularly important for this hair cell type. It further suggests that inositol phosphate may play a unique role in the outer hair cell.  相似文献   

2.
The gross structure and neuronal elements of the first optic ganglion of two crabs, Scylla serrata and Leptograpsus variegatus, are described on the basis of Golgi (selective silver) and reduced silver preparations. Of the eight retinula cells of each ommatidium, seven end within the lamina, while the eighth cell sends a long fibre to the external medulla. Five types on monopolar neurons are described, three types of large tangential fibres, and one fibre which may be centrifugal. The marked stratification of the lamina is produced by several features. The main synaptic region, the plexiform layer, is divided by a band of tangential fibres; the short retinula fibres end at two levels in the plexiform layer; and two types of monopolar cells have arboriasations confined to the distal or proximal parts of the plexiform layer. The information presently available concerning the retina-lamina projection in Crustacea is examined. Some of the implications of retina and lamina structure are discussed in conjunction with what is known about their electrophysiology.  相似文献   

3.
The electrosensory lobe (ELL) of mormyrid electric fish is a cerebellum-like brainstem structure that receives the primary afferent fibers from electroreceptors in the skin. The ELL and similar sensory structures in other fish receive extensive input from other central sources in addition to the peripheral input. The responses to some of these central inputs are adaptive and serve to minimize the effects of predictable sensory inputs. Understanding the interaction between peripheral and central inputs to the mormyrid ELL requires knowledge of its functional circuitry, and this paper examines this circuitry in the in vitro slice preparation and describes the axonal and dendritic morphology of major ELL cell types based on intracellular labeling with biocytin. The cells described include medium ganglion cells, large ganglion cells, large fusiform cells, thick-smooth dendrite cells, small fusiform cells, granule cells, and primary afferent fibers. The medium ganglion cells are Purkinje-like interneurons that terminate on the two types of efferent cells, i.e., large ganglion and large fusiform cells, as well as on each other. These medium ganglion cells fall into two morphologically distinct types based on the distributions of basal dendrites and axons. These distributions suggest hypotheses about the basic circuit of the ELL that have important functional consequences, such as enhancement of contrast between "on" elements that are excited by increased afferent activity and "off" elements that are inhibited.  相似文献   

4.
5.
Investigation of the morphology of ganglion cells in the cat retina has shown that a remarkable reduction in the number of dendritic spines and branches occurs during development of the alpha and beta cell classes. To learn whether dendritic remodelling represents a generalized mechanism of mammalian retinal ganglion cell development, we have examined the morphology of ganglion cells in the retina of the developing rat. The present study has concentrated on type II cells, which retain a great number of dendritic spines and branches in the adult and comprise a large proportion of the population of rat retinal ganglion cells. To reveal fine dendritic and axonal processes, Lucifer yellow was injected intracellularly in living retinae maintained in vitro. Size and complexity of the dendritic trees were found to increase rapidly during an initial stage of development lasting from late fetal life until approximately postnatal day 12 (P12). Dendrites and axons of immature ganglion cells expressed several transient morphological features comprising an excessive number of dendritic branches and spine-like processes, and short, delicate axonal sidebranches. The following developmental stage was characterized by a remarkable decrease in the morphological complexity of retinal ganglion cells and a slowed growth of their dendritic fields. The number of dendritic branches and spines of types I and II retinal ganglion cells declined after P12 to reach a mature level by the end of the first postnatal month. Thus, even cells that retain a highly complex dendritic tree into the adult state undergo extensive remodelling. These results suggest that regressive modifications at the level of the dendritic field constitute a generalized mechanism of maturation in mammalian retinal ganglion cells.  相似文献   

6.
The stuctural organization of the first optic ganglion (lamina) of the cockroach (Periplaneta americana) was investigated by the use of light and electron microscopy. Each compound eye of the cockroach is composed of up to 2000 visual units (ommatidia) of the fused rhabdom type. The ommatidia themselves consist of eight receptor cells which terminate as axons in either the first or second optic ganglion. Three different short visual fibre types end in two separate strata in the lamina, and one long fibre type ends in the second optic ganglion. Monopolar second-order neurons with wide field branching patterns in the middle stratum of the first synaptic region have postsynaptic contacts with sort visual fibres. Horizontal fibre elements with branching patterns at different levels of the lamina apparently from three horizontal plexuses with presynaptic and/or postsynaptic connections to first-and second-order neurons. The lack of well-organized fibre cartridges containing a constant number of first and second order neurons in each fascicle and the presence of only unistratified wide field monopolar cells could represent, as compared to other insect orders, a primitive stage in the development of the first optic ganglion.  相似文献   

7.
The dissociation and maintenance in culture of cells derived from the mushroom bodies of adult crickets (Acheta domesticus) are described. This primary culture was developed in order to investigate maturation and differentiation of mushroom-body cells including Kenyon cells, the major intrinsic interneurons of mushroom bodies, which have been shown to be involved in learning and memory in insects. Three distinct cell types were observed, all identified as neural cells on the basis of their size, morphology and immunocytochemical staining with horseradish peroxidase. These cells appear to correspond to the three cell types observed in vivo: Kenyon cells, ganglion mother cells and neuroblasts. Some cells showed neurite growth, usually with long unipolar processes, occasionally with either bipolar or, more rarely, multipolar processes. Neuronal cell bodies readily formed seals with patch pipettes, allowing stable, whole-cell, patch-clamp electrophysiological recordings. Depolarization of the cell under voltage-clamp resulted in at least two types of outwardly directed potassium currents: a delayed rectifier-type of current that was sensitive to tetraethylammonium, and a cadmium-sensitive current with rapid inactivation. Neither type of current was affected by quinidine, a blocker of potassium currents recorded from pupal honeybee Kenyon cells. Other ionic currents, which have yet to be characterized, were also observed.  相似文献   

8.
Neurofilaments, the neuron-specific intermediate filaments, are composed of three immunochemically distinct subunits: NF-L, NF-M and NF-H that can be either phosphorylated or unphosphorylated. In mammals, the distribution of these subunits has been described in vestibular ganglion neurons, but there are no reports on the presence of neurofilaments in vestibular hair cells. We investigated, by immunocytochemistry, neurofilaments in vestibular hair cells from rat and guinea-pig using antibodies against the three subunits and to dephosphorylated NF-H (clone SMI 32, recognizes also NF-M on immunoblots), on Vibratome sections of the vestibular end-organs and on isolated hair cells. Various immunostaining protocols were used, as appropriate for the method of observation: laser scanning confocal microscopy (immunofluorescence) and transmission electron microscopy (immunoperoxidase, pre-embedding technique). In rat and guinea-pig cristae and utricles, neurofilament immunoreactivity was observed in axons inside and below the sensory epithelia. In guinea-pig, in addition to this staining, intensely immunoreactive annular structures were found in the basal regions of hair cells. These rings were detected with anti-NF-L, -NF-M and -dephosphorylated NF-H/M antibodies, but not with anti-phosphorylation-independent NF-H. Ring-containing hair cells were present in all regions of the sensory epithelia but were more abundant in the peripheral areas. All levels of observation (Vibratome and thin sections, and isolated hair cells) showed that only the guinea-pig type I hair cells contained a neurofilament ring. High-resolution observations showed that the ring was located below the nucleus, often close to smooth endoplasmic reticulum and the cell membrane.  相似文献   

9.
The putative cholinergic and GABAergic elements of the pineal organ of lampreys were investigated with immunocytochemistry to choline acetyltransferase (ChAT) and gamma-aminobutyric acid (GABA), and by acetylcholinesterase (AChE) histochemistry. For comparison we also carried out immunocytochemistry to serotonin (5-HT) and a tract-tracing investigation of the two types of projecting cells, i. e., ganglion cells and long-axon photoreceptors. Most photoreceptors were ChAT-immunoreactive (ChAT-ir) and AChE-positive, while ganglion cells and the pineal tract were ChAT-negative and AChE-negative or only faintly positive. These results strongly suggest the presence of a cholinergic system of photoreceptors in the lamprey pineal organ. GABA-ir fibers that appear to originate from faintly to moderately stained ganglion cells were observed in the pineal stalk. Immunocytochemistry to 5-HT indicated the presence of two types of 5-HT-ir cells, bipolar cells and ganglion-like cells. The connections of the ganglion cells and long-axon photoreceptors were also studied by application of DiI to the pineal stalk in fixed brains or of biotinylated dextran amine (BDA) to one of the main targets of pinealofugal fibers (optic tectum or mesencephalic tegmentum) in isolated brains in vitro. Some long-axon photoreceptors and ganglion cells were labeled from the optic tectum. However, BDA application to the tegmentum exclusively labeled ganglion cells in the pineal organ. These results indicate that the two morphological types of afferent pineal neuron have different projections. No labeled cells were observed in the parapineal organ in BDA experiments, indicating that this organ and the pineal organ are involved in different neural circuits.  相似文献   

10.
A set of cytological studies performed in the utricle and saccule of Astronotus ocellatus (Teleostei, Percomorphi, Cichlidae) identified two basic types of hair cells and others with some intermediate characteristics. This paper reports on applying the same techniques to the saccule of Carassius auratus (Teleostei, Otophysi, Cyprinidae) and demonstrates similar types of hair cells to those found in Astronotus. Since Carassius and Astronotus are species of extreme taxonomic distance within the Euteleostei, two classes of mechanoreceptive hair cells are likely to represent the primitive condition for sensory receptors in the euteleost inner ear and perhaps in all bony fish ears.  相似文献   

11.
Age-related histopathologic changes were examined in cochleas from 17 gerbils born and kept in a quiet environment until near the end of their life expectancy. Hearing loss varied greatly as did the loss of outer hair cells (OHC). Inner hair cells (IHC) were seldom missing even in cochleas with severe hearing losses. Flask- and spherical-shaped OHCs were frequently seen in the apical turn. Stereocilia were usually present and orderly on OHCs, but the tallest row of stereocilia on IHCs was often disarrayed and sometimes missing. Alterations in supporting cells were sometimes present in regions of extensive OHC loss. Although pillar cells were seldom missing, the nuclei of outer pillar cells were commonly displaced from their normal basal position. The density of radial fibers appeared similar to that in young gerbils except in the apical turn of one old ear where a marked loss of radial fibers occurred without an attendant loss of IHCs. All of the quiet-aged cochleas showed a characteristic clustering of epithelial cells lining the scala media surface of Reissner's membrane. This structural rearrangement was not accompanied by a significant decrease in the total number of cells forming Reissner's membrane and did not appear to be associated with hearing loss. The findings confirm and extend earlier work showing that several different types of cells are susceptible to histopathologic changes in old ears. The extent of histopathologic changes varied widely as did the degree of hearing loss in animals with a restricted genetic background and maintained under carefully controlled environmental conditions. It was not possible, based on these initial findings, to relate specific structural to specific functional changes in the aging cochlea. Further light and electron microscopic analysis of other regions from these aged cochleas may provide more conclusive data.  相似文献   

12.
Fetal and postnatal ontogenesis of the rat cochlea, from the 16th gestational day (16DG) until 3 months post partum, were studied using scanning electron microscopy with emphasis on the stereocilia during the earliest stages of development. The epithelium of the cochlear duct in 16DG rat consisted of plygonal cells topped with numerous microvilli and one central kinocilium, which form the so-called K?lliker's organ. Inner hair cells (IHCs) appeared at 18DG in the basal cochlea. They were characterized by tufts of cilia of the same height and with a kinocilium. The first outer hair cells (OHCs) can be seen at 20DG. The earliest stages of ciliary differentiation, at 18DG for IHCs and 20DG for OHCs, were similar on both types of cells and were characterized by the presence of round bundles of cilia arising from the surrounding microvilli. A three-dimensional V-shaped organization for OHCs and the linear arrangement for IHCs appeared by the end of the first postnatal week, accompanied by the disappearance of transient cilia on the modiolar side of the hair cell and the kinocilium on the external side. The apical pole of OHCs reached adult-like morphology before that of IHCs. Various links between stereocilia were detected already at birth. Morphometric analysis showed that auditory cells from the base of the cochlea reached adult size by the end of the first postnatal week while those from the apex increased their size later. A review of the literature including comparative observations across species on the ontogenesis of the stereocilia shows that hair cells of the stato-acoustic system may present the same early ontogenesis.  相似文献   

13.
The arrangement and structure of sinus hair muscles in the snout of the shrew, Sorex unguiculatus, were studied by electron microscopy and serial section light microscopy. Both striated and smooth muscles are directly associated with sinus hair follicles. The striated muscle fibers originate from the base of a follicle and insert onto the superficial portion of adjoining caudally positioned follicles. Some fibers insert into the corium instead of inserting into a follicle. The fibers show a fine structure typical of red fibers. Smooth muscle cells form a network with elastic fibers beneath the corium. Some cells are directly attached to the capsule of the sinus, thus forming a type of M. arrector pili. Striated muscle febers that appear to end in the corium are connected with the smooth muscle network through the elastic fibers which appear to function as the tendon of these two types of muscle cell.  相似文献   

14.
Formation of neural cell polarity defined by oriented extension of axons and dendrites is a crucial event during the development of the nervous system. Ganglion cells of the chicken retina extend axons exclusively into the inner retina, whereas their dendrites grow into the outer retina. To analyze guidance cues for specific neurite extension, novel in vitro systems were established. Ganglion cells were purified by enzymatically facilitated detachment of the ganglion cell layer. A newly developed retrograde labeling technique and the expression analysis of the cell type-specific 2A1 antigen were used to monitor ganglion cell purification. In highly purified ganglion cells explanted onto retinal cryosections (cryoculture), axon formation was induced when the cells were positioned on the inner retina. In contrast, on outer layers of the developing retina dendritic outgrowth was prevalent. Because radial glia have been demonstrated to be instructive in neuritogenesis, distinct glial cell compartments located in inner and outer retina, respectively, were isolated for functional assays. Glial end feet were purified by a physical detachment technique. Glial somata were purified by complement mediated cytolysis of all nonglial cells. When ganglion cells were cultured on different glial compartments, axon formation occurred on end feet but not on glial somata. In striking contrast, on glial somata dendrites were formed. The data support the notion that ganglion cell polarity is affected by the retinal microenvironment, which in turn is possibly influenced by radial glia, being themselves polarized.  相似文献   

15.
The correlated activity of developing retinal ganglion cells is essential for the reorganization and refinement of retinogeniculate projections. Previous studies have uncovered marked changes in the spiking properties of retinal ganglion cells during this period of reorganization; however, a full understanding of the changes in the underlying ionic conductances has yet to be obtained. To this end, the whole-cell configuration of the patch-clamp technique was used to record currents conducted by voltage-gated calcium channels in 83 dissociated cat retinal ganglion cells obtained from animals aged between embryonic day 34 and postnatal day 105. Calcium currents, magnified by using barium as the major charge carrier, were isolated by substituting choline for Na+ in the bathing solution and Cs+ for K+ in the electrode solution. Three voltage-gated Ca2+ conductances were identified based on their voltage dependence and kinetics of activation and inactivation: a transient low-voltage-activated conductance, a transient high-voltage-activated conductance and a sustained high-voltage-activated conductance. During the developmental period examined there were significant increases in the densities of all three conductances, as well as significant changes in some of their activation and inactivation properties. These findings, together with those reported previously for the voltage-gated Na+ and K+ conductances, are related to the generation of excitability in developing retinal ganglion cells during a period critical to the normal development of the visual system. Furthermore, while the sustained high-voltage-activated conductance was present in all of the retinal ganglion cells observed, only about 72% expressed the transient high-voltage-activated current. During the developmental period examined, there was also an increase in the proportion of cells expressing the transient low-voltage-activated conductance. This, along with our previous finding that retinal ganglion cells heterogeneously express different types of voltage-gated K+ channels, strongly suggests that the spiking patterns observed in different classes of retinal ganglion cell may be due, in part, to their intrinsic membrane properties.  相似文献   

16.
RT-PCR was used to assay for growth factors and receptors from seven different protein families in cochlea tissues of the juvenile rat. There was a broad representation of the growth factor families in all the cochlea tissues examined, though the organ of Corti and stria vascularis expressed a greater variety than the spiral ganglion. This broad expression suggests that a variety of known growth factors play significant roles in the development, maintenance, and repair of the inner ear. The results of this survey serve as a basis for the design of future in vitro experiments that will address the ability of growth factors to protect hair cells from damage and to evoke a repair-regeneration response by injured hair cells.  相似文献   

17.
3,3'-Iminodipropionitrile (IDPN) causes a permanent syndrome of abnormalities in spontaneous behavior and a deficit in the axonal transport of neurofilaments (NF). Male Long-Evans rats were given IDPN (0, 200, 400, 600, or 1000 mg/kg, ip, in saline) and assessed for behaviors indicative of vestibular function at 1 week post-dosing. The morphology of the peripheral vestibular system in animals dosed with 0, 200, 400, 600, 800, or 1000 mg/kg of IDPN was assessed at 4 days post-dosing by light microscopy on semithin sections. Animals receiving 1000, 1500, or 2000 mg/kg of IDPN were assessed for morphological alterations in the vestibular ganglion at 8 days post-dosing. Behavioral data indicated a dose-dependent loss of vestibular function after IDPN, the vestibular deficits first appearing at the 400 mg/kg dose level. IDPN exposure was also observed to result in degeneration of the vestibular sensory hair cells. Degenerative changes were already found at the 400 mg/kg dose level, and were extensive after 1000 mg/kg. In the ganglion neurons, no effects were observed after 1000 mg/kg of IDPN, but perikaryal accumulations of NF were found after 1500 or 2000 mg/kg. In conclusion, the data showed that low doses of IDPN are toxic to the vestibular hair cells, and suggest a link between this action and the effects of the chemical on spontaneous behavior. In addition, doses of IDPN larger than those required for toxicity to the vestibular sensory cells, induced accumulations of NF in the myelinated cell bodies of the vestibular ganglion neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The progression of recovery of the vestibular sensory epithelia of guinea pigs after gentamicin-induced hair cell injury was assessed quantitatively and qualitatively. Evaluations were made of the number of cells bearing hair bundles by using scanning electron microscopy (SEM) and of identifiable hair cells in thin sections. Both assessment procedures showed that an initial loss of hair cells in utricular maculae is followed by significant recovery in the number of hair cells present. SEM also showed recovery in saccules comparable to that in utricles. During the recovery, progressive maturation of hair bundles, which exhibited features similar to those seen during normal ontogenetic development of hair cells, could be identified. The pattern and extent of hair cell loss and subsequent reappearance revealed by SEM corresponded with that derived from analysis of thin sections. This suggests that repair of nonlethally damaged hair cells is unlikely but, rather, that new hair cells are produced. An apparent decrease in supporting cell numbers was observed coincident with the increase in hair cell numbers. This complements previous morphological observations, which have suggested new hair cells arise from direct, nonmitotic transdifferentiation of supporting cells. The quantitative analyses indicate that more than half of the hair cells that are lost are replaced, but the recovery process does not result in complete restoration of the epithelium. Eight months after the end of drug treatment, the number of hair cells present was still significantly less than normal, and several other abnormalities persisted. There was also no evidence of any hair cell recovery in the organ of Corti. Thus, there appear to be limitations on the capacity for spontaneous replacement of lost hair cells in the mammalian inner ear.  相似文献   

19.
The distribution of ofloxacin (OFLX) along the shaft of each of three hair types, i.e., head, axillary and pubic, was investigated and compared among five healthy male volunteers 1 to 4 months after ingestion of OFLX for 1 or 2 days (total dose, 200 or 600 mg). Five strands of each hair type were sectioned together into successive 0.5-cm lengths starting from the dermal end, over a length of < or = 6 cm, and the OFLX concentration in each hair section was measured by high-pressure liquid chromatography with fluorescence detection. The distribution of OFLX along the head hair shaft was narrow, having a single peak even 3 to 4 months after administration, suggesting a rather uniform growth rate among hair strands. On the other hand, the OFLX distribution along axillary or pubic hair shafts tended to be broad, even having two apparent peaks, and the growth rate did not seem uniform. Since axillary hair seemed to stop growing after having gained a length of < or = 4 to 5 cm, it was suggested to enter a resting stage after the growth of < or = 3 cm over the 2 to 4 months after OFLX incorporation. These findings indicate that head hair is the most suitable for analysis of individual drug use and the larger growth rate and cycle stage variabilities of strands of the other types of hair should be taken into account.  相似文献   

20.
Sixteen phases in the microenvironments were defined for the structural development and innervation of the cochleo-vestibular ganglion and its targets. In each phase the cell adhesion molecules, neural cell adhesion molecule, neural cell adhesion molecule-polysialic acid, and L1-cell adhesion molecule, were expressed differentially by cochleo-vestibular ganglion cells, their precursors, and the target cells on which they synapse. Detected by immunocytochemistry in staged chicken embryos, in the otocyst, neural cell adhesion molecule, but not L1-cell adhesion molecule, was localized to the ganglion and hair cell precursors. Ganglionic precursors, migrating from the otocyst, only weakly expressed neural cell adhesion molecule. Epithelial hair cell precursors, remaining in the otocyst, expressed neural cell adhesion molecule, but not L1-cell adhesion molecule. Post-migratory ganglion cell processes expressed both molecules in all stages. The cell adhesion molecules were most heavily expressed by axons penetrating the otic epithelium and accumulated in large amounts in the basal lamina. In the basilar papilla (cochlea), cell adhesion molecule expression followed the innervation gradient. Neural cell adhesion molecule and L1 were heavily concentrated on axonal endings peripherally and centrally. In the rhombencephalon, primitive epithelial cells expressed neural cell adhesion molecule, but not L1-cell adhesion molecule, except in the floorplate. The neuroblasts and their axons expressed L1-cell adhesion molecule, but not neural cell adhesion molecule, when they began to migrate and form the dorsal commissure. There was a stage-dependent, differential distribution of the cell adhesion molecules in the floorplate. Commissural axons expressed both cell adhesion molecules, but their polysialic acid disappeared within the floorplate at later stages. In conclusion, the cell adhesion molecules are expressed by the same cells at different times and places during their development. They are positioned to play different roles in migration, target penetration, and synapse formation by sensory neurons. A multiphasic model provides a morphological basis for experimental analyses of the molecules critical for the changing roles of the microenvironment in neuronal specification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号