首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The Escherichia coli purine repressor, PurR, exists in an equilibrium between open and closed conformations. Binding of a corepressor, hypoxanthine or guanine, shifts the allosteric equilibrium in favor of the closed conformation and increases the operator DNA binding affinity by 40-fold compared to aporepressor. Glu70 and Trp147 PurR mutations were isolated which perturb the allosteric equilibrium. Three lines of evidence indicate that the allosteric equilibrium of E70A and W147A aporepressors was shifted toward the closed conformation. First, compared to wild-type PurR, these mutant repressors had a 10-30-fold higher corepressor binding affinity. Second, the mutant aporepressors bound to operator DNA with an affinity that is characteristic of the wild-type PurR holorepressor. Third, binding of guanine to wild-type PurR resulted in a near-UV circular dichroism spectral change at 297-305 nm that is attributed to the closed conformation. The circular dichroism spectrum of the E70A aporepressor at 297-305 nm was that expected for the closed conformation, and it was not appreciably altered by corepressor binding. Mutational analysis was used to identify an Arg115-Ser46' interdomain intersubunit hydrogen bond that is necessary for transmitting the allosteric transition in the corepressor binding domain to the DNA binding domain. R115A and S46G PurR mutants were defective in DNA binding in vitro and repressor function in vivo although corepressor binding was identical to the wild type. These results establish that the hydrogen bond between the side chain NH2 of Arg115 and the main chain CO of Ser46' plays a critical role in interdomain signaling.  相似文献   

2.
Strong dimerization of the repressor, mediated by the carboxyl (C)-terminal domain, is a prerequisite for forming a specific complex with DNA and cooperative DNA binding to form tetramers. We have generated a computer model of the C-terminal domain of the 434 repressor based on the crystal structure of the homologous UmuD' protein. This model predicts that residues in the primary sequence between 93 and 168 contribute to the dimer interface. We changed several amino acid residues located in this region. Gel filtration and crosslinking assays were used to characterize the strength and specificity of dimerization of the purified repressor C-terminal domain dimer interface mutants. These results indicate that amino acid residues K121, H139, D161 and N163 contribute to the strength and/or specificity of dimerization. The relative affinity of the bacteriophage 434 repressor for 434 operators is determined, in part, by the repressor's ability to detect sequence-dependent structural alterations in the non-contacted region at the center of an operator site. We find that the relative ability of C-terminal domain dimer interface mutant repressors to dimerize does not necessarily predict their relative abilities to bind DNA, and that these proteins are deficient in detecting non-contacted base-dependent differences in operator strength. Our results show that the structure of the DNA in complex with these mutant proteins differs from that found in wild-type repressor-operator complexes, even though the sites of these mutations lie in a separate domain from that which contacts the DNA. These observations demonstrate that the structural integrity of the C-terminal domain dimer interface is required to appropriately orient the DNA binding information contained within the DNA-contacting N-terminal domain.  相似文献   

3.
We have sequenced p53 in three colon cancer cell lines capable of autonomous proliferation. SNU-C1 and SNU-C4 cells, whose autonomous growth is dependent upon autocrine stimulation of epidermal growth factor receptor (EGFR), had wildtype p53 sequence of exons 4-9. In contrast, an EGFR ligand-independent cell line, SNU-C5, had heterozygous missense mutations affecting codons 218 (valine to leucine) and 248 (arginine to tryptophan) of p53. Bacterial cloning of p53 from SNU-C5 cells showed that the 248trp and 218leu mutants were both expressed and on separate alleles. 248trp is a common 'hot spot' mutant of p53 with variable dominant negative activity depending on the celullar context. Valine 218, in contrast, is rarely affected by mutation in cancers and is located in a region of the hydrophobic core domain away from 'hot spot' DNA contact sights. However, valine 218 is completely conserved across species, prompting us to investigate the function of 218leu in SNU-C5 cells. SNU-C5 cells exhibited complete loss of normal p53 function as evidenced by over-expression of p53 protein and by failure to show induction of p53, waf-1, mdm-2 or G1/S arrest in response to the DNA damaging agent, bleomycin. In a yeast p53 functional assay (FASAY), 50% of the clones were unable to transactivate a p53-specific promoter required for yeast colony expansion at 25, 30 or 37 degrees C. Sequencing of the p53 insert from several randomly selected wild-type and mutant yeast clones revealed that 218leu-bearing clones retained their ability to transactivate the p53-specific promoter. As expected, the 248trp-bearing clones lost this function. These data indicate that although 218leu retains normal transactivation activity on a p53 promoter in yeast at physiological temperatures, it is not capable of normal p53 function in the presence of a 248trp allele in SNU-C5 cells. It remains unclear whether the strong dominant negative activity of 248trp in SNU-C5 cells is related to the cellular context or to an unresolved abnormality of 218leu function.  相似文献   

4.
The repressor protein of bacteriophage 434 binds to DNA as a dimer of identical subunits. Its strong dimerization is mediated by the carboxyl-terminal domain. Cooperative interactions between the C-terminal domains of two repressor dimers bound at adjacent sites can stabilize protein-DNA complexes formed with low-affinity binding sites. We have constructed a plasmid, pCT1, which directs the overproduction of the carboxyl-terminal domain of 434 repressor. The protein encoded by this plasmid is called CT-1. Cells transformed with pCT1 are unable to be lysogenized by wild-type 434 phage, whereas control cells are lysogenized at an efficiency of 1 to 5%. The CT-1-mediated interference with lysogen formation presumably results from formation of heteromeric complexes between the phage-encoded repressor and the plasmid-encoded carboxyl-terminal domain fragment. These heteromers are unable to bind DNA and thereby inhibit the repressor's activity in promoting lysogen formation. Two lines of evidence support this conclusion. First, DNase I footprinting experiments show that at a 2:1 ratio of CT-1 to intact 434 repressor, purified CT-1 protein prevents the formation of complexes between 434 repressor and its OR1 binding site. Second, cross-linking experiments reveal that only a specific heterodimeric complex forms between CT-1 and intact 434 repressor. This latter observation indicates that CT-1 interferes with 434 repressor-operator complex formation by preventing dimerization and not by altering the conformation of the DNA-bound repressor dimer. Our other evidence is also consistent with this suggestion. We have used deletion analysis in an attempt to define the region which mediates the 434 repressor-CT-1 interaction. CT-1 proteins which have more than the last 14 amino acids removed are unable to interfere with 434 repressor action in vivo.  相似文献   

5.
6.
Both direct and indirect readouts are utilized when the trp repressor binds to its operators. Here, we use gel-electrophoretic methods to examine the role played by direct and indirect readouts in the interaction of the repressor with a non-canonical binding site, similar to the mtr operator, and named trpGG. The stability and affinity of the 1:1 complexes of the trp repressor with this non-canonical site are lower than those of the 1:1 complexes formed with either the natural consensus sequence or a consensus sequence found in a selection experiment. We attribute this to the inability of the trpGG target to make the same number of water-mediated hydrogen bonds as canonical trp binding sites. On the other hand, the 2:1 complex of the repressor with trpGG has high stability and affinity, similar to that of the 2:1 complex with a consensus sequence found by a selection experiment. The bend angle induced on the trpGG target by the binding of one repressor molecule is 27 degrees, which is similar to that measured in other 1:1 complexes with the repressor. The angle for the 2:1 complex is significantly larger (43 degrees versus 30 degrees in other 2:1 complexes). We present evidence suggesting that the deleterious effect of the sequence substitution in trpGG is compensated by the increased bend angle in the 2:1 complex. These observations demonstrate that indirect readout may complement for direct readout in determining the nature of the interaction between trp repressor and its binding sites.  相似文献   

7.
Two different modes can be used when the trp repressor binds to trp binding sites. In the "full-site mode" each repressor molecule is bound to a DNA target containing at least two conserved five base pair tracts separated by eight base pairs. The binding of the repressor to natural trp operators is of this kind. In the "half-site mode" two repressor molecules are sequence-specifically bound, with infinite cooperativity, to two abutting DNA pentamers. We present evidence suggesting that the sequences obtained by a recent in vitro selection assay (Czernik et al. J. Biol. Chem. 269, 27869-27875, 1994) were selected by the binding of two repressor molecules, and that the repressor is bound to most of these sequences using the half-site mode. Using the results of the selection assay, and the set of natural trp binding sites, we characterize the different sequence requirements of the "full-site" versus the "half-site" binding modes. A statistical analysis of the information content of these binding sites shows that functional information on protein binding modes can be extracted from a set of DNA binding sites by comparing the information content of two different DNA populations, or sub-populations. Furthermore, it shows that the binding of proteins to sequences selected by a functional in vitro assay do not necessarily mimic the binding of the protein to the natural targets, even if the information content is similar in the two DNA target populations, i.e., even if the stringency of the selection assay is adequate for locating natural-like sequences. In addition, we show that the structural requirements for protein-DNA interactions can be achieved by different conformations at the base-pair level. Differences in the structural characteristics of different base-pair steps can be used to determine the binding mode and differential binding affinity, which can be utilized in the regulation of several binding sites by a single specific protein.  相似文献   

8.
Arginine biosynthesis in Escherichia coli is negatively regulated by the hexameric repressor protein ArgR and the corepressor L-arginine. L-Arginine binds to ArgR in the C-terminal domain of the repressor. Binding to operator DNA occurs in the N-terminal domain. The molecular structures of both domains have recently been elucidated. The known stereochemistry of the arginine binding pocket was used for the rational design of a mutant ArgR with altered ligand specificity. Our prediction was that a replacement of Asp128 by asparagine would preferentially lead to the binding of L-citrulline, rather than L-arginine. The D128N mutant was constructed and was shown to fulfill our expectation by several experimental approaches. By isothermal titration calorimetry it was found to bind L-citrulline much more strongly than L-arginine, in contrast to wild-type ArgR. Exchange between the mutant trimers of the hexamer was inhibited by L-citrulline, as it is by L-arginine in the wild-type. The mutant protein was precipitated by L-citrulline but not by L-arginine, whereas the reverse is true for the wild-type protein. Demonstration of a corepressor action was, however, precluded by the superrepressor effect of the D128N mutation by itself. The mutant protein, in the absence of L-citrulline or L-arginine is as strong a repressor as the wild-type protein in the presence of L-arginine. We discuss two possible mechanisms, in terms of the known domain structures that could explain our observations.  相似文献   

9.
The structure and hydration of the DNA duplex d-(AGCGTACTAGTACGCT)2 corresponding to the trp operator fragment used in the crystal structure of the half site complex (PDB entry 1TRR) was studied by a 1.4 ns molecular dynamics simulation in water. The simulation, starting from a B-DNA conformation, used a non-bonded cutoff of 1.4 nm with a reaction field correction and resulted in a stable trajectory. The average DNA conformation obtained was closer to the ones found in the crystal structures of the complexes (PDB entries 1TRO and 1TRR) than to the crystal structure of unbound trp operator (Nucleic Acid Database entry BDJ061). The DNA hydration was characterized in terms of hydrogen bond percentages and corresponding residence times. The residence times of water molecules within 0.35 nm of the DNA non-exchangeable protons were calculated for comparison with NMR measurements of intermolecular water-DNA NOEs and nuclear magnetic relaxation dispersion measurements. No significant difference was found between major and minor groove hydration. The DNA donors and acceptors were hydrogen bonded to water molecules for 77(+/-19)% of the time on average. The average residence time of the hydrogen bonded water molecules was 11(+/-11) ps with a maximum of 223 ps. When all water molecules within NOE distance (0.35 nm) of non-exchangeable protons were considered, the average residence times increased to an average of 100(+/-4) ps and a maximum of 608 ps. These results agree with the experimental NMR results of Sunnerhagen et al. which did not show any evidence for water molecules bound with more than 1 ns residence time on the DNA surface. The exchange of hydration water from the DNA occurred in the major groove primarily through direct exchange with the bulk solvent, while access to and from the minor groove frequently proceeded via pathways involving ribose O3' and O4' and phosphate O2P oxygen atoms. The most common water diffusion pathways in the minor groove were perpendicular to the groove direction. In general, water molecules visited only a limited number of sites in the DNA grooves before exiting. The hydrogen bonding sites, where hydrogen bonds could be formed with donor and acceptor groups of the DNA, were filled with water molecules with an average B-factor value of 0.58 mn2. No special values were observed at any of the sites, where water molecules were observed both in the trp repressor/operator co-crystals and in the crystal structure of unbound DNA.  相似文献   

10.
11.
RepA, the initiator protein of plasmid P1, binds to multiple sites (iterons) in the origin. The binding normally requires participation of chaperones, DnaJ, DnaK and GrpE. When purified, RepA appears dimeric and is inactive in iteron binding. On reaction with chaperones, a species active in iteron binding is formed and found to be monomeric. To test whether the chaperones can reduce dimerization, RepA was used to replace the dimerization domain of the lambda repressor. The hybrid protein repressed the lambda operator efficiently, indicating that RepA can dimerize in vivo. A further increase in repressor activity was seen in dnaJ mutant cells. These results are consistent with a chaperone-mediated reduction of RepA dimerization. We also found that RepA mutants defective in dimerization still depend on DnaJ for iteron binding. Conversely, RepA mutants that no longer require chaperones for iteron binding remain dimerization proficient. These results indicate that the chaperone dependence of RepA activity is not solely owing to RepA dimerization. Our results are most simply explained by a chaperone-mediated conformational change in RepA protomer that activates iteron binding. This conformational change also results in reduced RepA dimerization.  相似文献   

12.
13.
14.
P elements are a family of mobile DNA elements found in Drosophila. P-element transposition is tightly regulated, and P-element-encoded repressor proteins are responsible for inhibiting transposition in vivo. To investigate the molecular mechanisms by which one of these repressors, the KP protein, inhibits transposition, a variety of mutant KP proteins were prepared and tested for their biochemical activities. The repressor activities of the wild-type and mutant KP proteins were tested in vitro using several different assays for P-element transposase activity. These studies indicate that the site-specific DNA-binding activity of the KP protein is essential for repressing transposase activity. The DNA-binding domain of the KP repressor protein is also shared with the transposase protein and resides in the N-terminal 88 amino acids. Within this region, there is a C2HC putative metal-binding motif that is required for site-specific DNA binding. In vitro the KP protein inhibits transposition by competing with the transposase enzyme for DNA-binding sites near the P-element termini.  相似文献   

15.
16.
Relationships between dimerization and site-specific binding have been characterized previously for wild-type and mutant cI repressors at the right operator (OR) of bacteriophage lambda DNA. However, the roles of higher-order oligomers (tetramers and octamers) that are also formed from these cI molecules have remained elusive. In this study, a clear correlation has been established between repressor oligomerization and non-specific DNA-binding activity. A modification of the quantitative DNase I footprint titration technique has been used to evaluate the degree of saturation of non-specific, OR-flanking lambda DNA by cI repressor oligomers. With the exception of one mutant, only those repressors capable of octamerizing were found to exhibit non-specific DNA-binding activity. The non-specific interaction was accurately modeled using either a one-dimensional, univalent, site-specific Ising lattice approximation, or a more traditional, multivalent lattice approach. It was found that non-specific DNA-binding by repressor oligomers is highly cooperative and energetically independent from site-specific binding at OR. Furthermore, the coupling free energy resolved for non-specific binding was similar to that of site-specific binding for each repressor, suggesting that similar structural elements may mediate the cooperative component of both binding processes. It is proposed that the state of assembly of the repressor molecule modulates its relative affinity for specific and non-specific DNA sequences. These specificities are allosterically regulated by the transmission of assembly-state information from the C-terminal domain, which mediates self-association and cooperativity, to the N-terminal domain, which primarily mediates DNA-binding. While dimers have a high affinity for their cognate sites within OR, tetramers and octamers may preferentially recognize non-specific DNA sequences. The concepts and findings developed in this study may facilitate quantitative characterization of the relationships between specific, and non-specific binding in other systems that utilize multiple modes of DNA-binding cooperativity.  相似文献   

17.
18.
The repressor protein of bacteriophage P22 binds to DNA as a homodimer. This dimerization is absolutely required for DNA binding. Dimerization is mediated by interactions between amino acids in the carboxyl (C)-terminal domain. We have constructed a plasmid, p22CT-1, which directs the overproduction of just the C-terminal domain of the P22 repressor (P22CT-1). Addition of P22CT-1 to DNA-bound P22 repressor causes the dissociation of the complex. Cross-linking experiments show that P22CT-1 forms specific heterodimers with the intact P22 repressor protein, indicating that inhibition of P22 repressor DNA binding by P22CT-1 is mediated by the formation of DNA binding-inactive P22 repressor:P22CT-1 heterodimers. We have taken advantage of the highly conserved amino acid sequences within the C-terminal domains of the P22 and 434 repressors and have created chimeric proteins to help identify amino acid regions required for dimerization specificity. Our results indicate that the dimerization specificity region of these proteins is concentrated in three segments of amino acid sequence that are spread across the C-terminal domain of each of the two phage repressors. We also show that the set of amino acids that forms the cooperativity interface of the P22 repressor may be distinct from those that form its dimer interface. Furthermore, cooperativity studies of the wild-type and chimeric proteins suggest that the location of cooperativity interface in the 434 repressor may also be distinct from that of its dimerization interface. Interestingly, changes in the dimer interface decreases the ability of the 434 repressor to discriminate between its wild-type binding sites, O(R)1, O(R)2, and O(R)3. Since 434 repressor discrimination between these sites depends in large part on the ability of this protein to recognize sequence-specific differences in DNA structure and flexibility, this result indicates that the C-terminal domain is intimately involved in the recognition of sequence-dependent differences in DNA structure and flexibility.  相似文献   

19.
Substitution of Cys for Val at position 52 of the lac repressor was designed to permit disulfide bond formation between the two N-terminal DNA binding domains that comprise an operator DNA binding site. This position marks the closest approach of these domains based on the x-ray crystallographic structures of the homologous purine holorepressor-operator complex and lac repressor-operator complex (Schumacher, M. A., Choi, K. Y., Zalkin, H., and Brennan, R. G. (1994) Science 266, 763-770; Lewis, M., Chang, G., Horton, N.C., Kercher, M. A., Pace, H. C., Schumacher, M. A., Brennan, R. G., and Lu, P. (1996) Science 271, 1247-1254). The V52C mutation was generated by site-specific methods, and the mutant protein was purified and characterized. In the reduced form, V52C bound operator DNA with slightly increased affinity. Exposure to oxidizing conditions resulted in disulfide bond formation, and the oxidized protein bound operator DNA with approximately 6-fold higher affinity than wild-type protein. Inducer binding for both oxidized and reduced forms of V52C was comparable to wild-type lac repressor. In the presence of inducer, the reduced protein exhibited wild-type, diminished DNA binding. In contrast, DNA binding for the oxidized form was unaffected by inducer, even at 1 mM. Thus, the formation of the designed disulfide between Cys52 side chains within each dimer renders the protein-operator complex unresponsive to sugar binding, presumably by disrupting the allosteric linkage between operator and inducer binding.  相似文献   

20.
Single-chain derivatives of the phage 434 repressor, termed single-chain repressors, contain covalently dimerized DNA-binding domains (DBD) which are connected with a peptide linker in a head-to-tail arrangement. The prototype RR69 contains two wild-type DBDs, while RR*69 contains a wild-type and an engineered DBD. In this latter domain, the DNA- contacting amino acids of thealpha3 helix of the 434 repressor are replaced by the corresponding residues of the related P22 repressor. We have used binding site selection, targeted mutagenesis and binding affinity studies to define the optimum DNA recognition sequence for these single-chain proteins. It is shown that RR69 recognizes DNA sequences containing the consensus boxes of the 434 operators in a palindromic arrangement, and that RR*69 optimally binds to non-palindromic sequences containing a 434 operator box and a TTAA box of which the latter is present in most P22 operators. The spacing of these boxes, as in the 434 operators, is 6 bp. The DNA-binding of both single-chain repressors, similar to that of the 434 repressor, is influenced indirectly by the sequence of the non-contacted, spacer region. Thus, high affinity binding is dependent on both direct and indirect recognition. Nonetheless, the single-chain framework can accommodate certain substitutions to obtain altered DNA-binding specificity and RR*69 represents an example for the combination of altered direct and unchanged indirect readout mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号