首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An intrinsic feature of yeast artificial chromosomes (YACs) is that the cloned DNA is generally in the same size range (i.e., approximately 200-2000 kb) as the endogenous yeast chromosomes. As a result, the isolation of YAC DNA, which typically involves separation by pulsed-field gel electrophoresis, is frequently confounded by the presence of a comigrating or closely migrating endogenous yeast chromosome(s). We have developed a strategy that reliably allows the isolation of any YAC free of endogenous yeast chromosomes. Using recombination-mediated chromosome fragmentation, a set of Saccharomyces cerevisiae host strains was systematically constructed. Each strain contains defined alterations in its electrophoretic karyotype, which provide a large-size interval devoid of endogenous chromosomes (i.e., a karyotypic "window"). All of the constructed strains contain the kar1-delta 15 mutation, thereby allowing the efficient transfer of a YAC from its original host into an appropriately selected window strain using the kar1-transfer procedure. This approach provides a robust and efficient means to obtain relatively pure YAC DNA regardless of YAC size.  相似文献   

3.
Yeast artificial chromosome (YAC) clones propagate large segments of exogenous DNA in a host organism with well-developed classical and molecular genetics. Most extant YAC clones are from libraries created in a single yeast host (AB1380). The application of techniques allowing the manipulation and/or restructuring of these cloned DNA segments often requires a change in the yeast genetic background to introduce desirable genetic markers. Transfer methods in current use require extremely high yeast transformation efficiencies or require access to equipment for yeast tetrad analysis. We have developed an alternative method for moving YAC clones from one yeast strain to another, taking advantage of the properties of kar1 mutants altered in a gene required for normal karyogamy (nuclear fusion) during mating. Transfer by this method requires generally accessible methods, including yeast cell culture, replica plating, and pulsed-field gel electrophoresis. We present data demonstrating efficient transfer of nine different YACs from their original host (AB1380) to a kar1 recipient strain (YPH925) with genetic markers that facilitate the use of existing homologous recombination-based modification methods. The enhanced ability to transfer clones to this new host will accelerate the pace of refinement and fine-structure mapping of the YAC contigs currently under construction and facilitate gene manipulation on YACs for subsequent functional analysis.  相似文献   

4.
In order to define a functional human centromere sequence, an artificial chromosome was constructed as a reproducible DNA molecule. Mammalian telomere repeats and a selectable marker were introduced into yeast artificial chromosomes (YACs) containing alphoid DNA from the centromere region of human chromosome 21 in a recombination-deficient yeast host. When these modified YACs were introduced into cultured human cells, a YAC with the alphoid DNA from the alpha21-I locus, containing CENP-B boxes at a high frequency and a regular repeat array, efficiently formed minichromosomes that were maintained stably in the absence of selection and bound CENP-A, CENP-B, CENP-C and CENP-E. The minichromosomes, 1-5 Mb in size and composed of multimers of the introduced YAC DNA, aligned at metaphase plates and segregated to opposite poles correctly in anaphase. Extensive cytological analyses strongly suggested that the minichromosomes had not acquired host sequences and were formed in all cases by a de novo mechanism. In contrast, minichromosomes were never produced with a modified YAC containing alphoid DNA from the alpha21-II locus, which contains no CENP-B boxes and has a less regular sequence arrangement. We conclude that alpha21-I alphoid DNA can induce de novo assembly of active centromere/kinetochore structures on minichromosomes.  相似文献   

5.
Yeast artificial chromosomes (YACs) are providing a great boon to transgene technology by allowing the easy mutagenesis and study of very large DNAs. The large insert sizes of these vectors permit more accurate analysis of the regulation of transgene expression than smaller, more artificially assembled constructs. Transfection of mammalian cells by YACs can be accomplished by a number of methods; the most prevalent, using gel-purified DNA, is dependent upon compaction by salts to protect the large YAC DNA from breakage. We show that the common reliance on NaCl to compact YAC DNA sufficiently to protect it from breakage is not well-founded. Even the use of mixtures of polyamines and NaCl allows substantial damage to purified YACs. The use of polyamines alone in low salt buffers to compact YAC DNA provides the best protection from breakage and allows very effective transfection of murine embryonic stem (ES) cells. We provide a detailed method for ES cell transfection by YACs utilizing the DOTAP lipofection reagent that optimizes transfection efficiency and recovery of intact YACs.  相似文献   

6.
The transformation-associated recombination (TAR) procedure allows rapid, site-directed cloning of specific human chromosomal regions as yeast artificial chromosomes (YACs). The procedure requires knowledge of only a single, relatively small genomic sequence that resides adjacent to the chromosomal region of interest. We applied this approach to the cloning of the neocentromere DNA of a marker chromosome that we have previously shown to have originated through the activation of a latent centromere at human chromosome 10q25. Using a unique 1.4-kb DNA fragment as a "hook" in TAR experiments, we achieved single-step isolation of the critical neocentromere DNA region as two stable, 110- and 80-kb circular YACs. For obtaining large quantities of highly purified DNA, these YACs were retrofitted with the yeast-bacteria-mammalian-cells shuttle vector BRV1, electroporated into Escherichia coli DH10B, and isolated as bacterial artificial chromosomes (BACs). Extensive characterization of these YACs and BACs by PCR and restriction analyses revealed that they are identical to the corresponding regions of the normal chromosome 10 and provided further support for the formation of the neocentromere within the marker chromosome through epigenetic activation.  相似文献   

7.
The introduction of high molecular weight DNA into mammalian cells is useful for gene expression studies. However, current transfection strategies are inefficient, necessitating propagation of stable DNA transformants prior to analysis of gene expression. Here we demonstrate that transient lipid-mediated DNA transfection can be used to assess gene expression from yeast artificial chromosomes (YACs) containing the 230 kb cystic fibrosis transmembrane conductance regulator gene ( CFTR ) and Escherichia coli lacZ . We also show that psoralen-UV inactivated adenovirus significantly enhances transfection efficiency. The ability to deliver high molecular weight DNA using lipid-mediated transfection should expedite the analysis of large human genes contained within artificial chromosome vectors.  相似文献   

8.
RecA-assisted restriction endonuclease (RARE) cleavage is an "Achilles' heel" approach to restriction mapping whereby a RecA-protein-oligodeoxynucleotide complex protects an individual restriction site from methylation, thus limiting subsequent digestion to a single, predetermined site. We have used RARE cleavage to cut yeast artificial chromosomes (YACs) at specific EcoRI sites located within or adjacent to sequence-tagged sites (STSs). Each cleavage reaction produces two YAC fragments whose sizes are a direct measure of the position of the STS in the YAC. In this fashion, we have positioned 45 STSs within a contig of 19 independent YACs and constructed a detailed RARE-cleavage map that represents 8.4 Mbp of human chromosome 6p21.3-22. By comparing maps of overlapping YACs, we were able to detect seven internal deletions that ranged from approximately 75 kbp to approximately 1 Mbp in size. Thirteen pairs of EcoRI sites were targeted for double RARE cleavage in uncloned total human DNA. The excised fragments, up to 2 Mbp in size, were resolved by pulsed-field gel electrophoresis and were detected by hybridization. In general, the genomic RARE-cleavage results support the YAC-based map. In one case, the distance in uncloned DNA between the two terminal EcoRI sites of a YAC insert was approximately 1 Mbp larger than the YAC itself, indicating a major deletion. The general concept of RARE-cleavage mapping as well as its applications and limitations are discussed.  相似文献   

9.
Sequence-tagged site (STS) content mapping in yeast artificial chromosomes (YACs) was used to cover the region deleted in two patients affected with X-linked lymphoproliferative disorder. The order of markers includes, centromere to telomere, DXS8009-DXS1206-DXS8078-DXS8044-DXS982- DXS6811-DXS8093-AFM240xblO- DXS75-DXS737-DXS100-DXS6-DXS1046-DXS803 8. The order of six major markers is confirmed by fluorescent in situ hybridization, and all the markers assigned by linkage mapping fall within a 1.6-cM interval. The contig comprises 90 clones containing 89 STSs, yielding a resolution of 50 kb; DNA in a gap just telomeric to DXS8044 has not been found in > 20 equivalents of YACs or bacterial clones. The two deletions were found to have centromeric breakpoints that lie close to DXS1206 and may be identical; the telomeric breakpoints are -150 kb apart, one falling between DXS737 and DXS100, the other between DXS100 and DXS1046. Several STSs near the breakpoints show weak amplification from more than one site; one gives products from three groups of YACs, and lie, respectively, within 50 kb of the centromeric and the two telomeric deletion borders. Such partially duplicated segments of DNA are candidates for involvement in the formation of the deletions.  相似文献   

10.
Interspersed repetitive element (IRE)-PCR is a useful method for identification of novel human or mouse sequence tagged sites (STSs) from contigs of genomic clones. We describe the use of IRE-PCR with mouse B1 repetitive element primers to generate novel, PCR amplifiable, simple sequence length polymorphisms (SSLPs) from yeast artificial chromosome (YAC) clones containing regions of mouse chromosomes 13 and 14. Forty-two IRE-PCR products were cloned and sequenced from eight YACs. Of these, 29 clones contained multiple simple sequence repeat units. PCR analysis with primers derived from unique sequences flanking the simple sequence repeat units in seven clones showed all to be polymorphic between various mouse strains. This novel approach to SSLP identification represents an efficient method for saturating a genomic interval with polymorphic genetic markers that may expedite the positional cloning of genes for traits and diseases.  相似文献   

11.
Strategies to construct the physical map of the Trypanosoma cruzi nuclear genome have to capitalize on three main advantages of the parasite genome, namely (a) its small size, (b) the fact that all chromosomes can be defined, and many of them can be isolated by pulse field gel electrophoresis, and (c) the fact that simple Southern blots of electrophoretic karyotypes can be used to map sequence tagged sites and expressed sequence tags to chromosomal bands. A major drawback to cope with is the complexity of T. cruzi genetics, that hinders the construction of a comprehensive genetic map. As a first step towards physical mapping, we report the construction and partial characterization of a T. cruzi CL-Brener genomic library in yeast artificial chromosomes (YACs) that consists of 2,770 individual YACs with a mean insert size of 365 kb encompassing around 10 genomic equivalents. Two libraries in bacterial artificial chromosomes (BACs) have been constructed, BACI and BACII. Both libraries represent about three genome equivalents. A third BAC library (BAC III) is being constructed. YACs and BACs are invaluable tools for physical mapping. More generally, they have to be considered as a common resource for research in Chagas disease.  相似文献   

12.
A human artificial chromosome (HAC) vector was constructed from a 1-Mb yeast artificial chromosome (YAC) that was selected based on its size from among several YACs identified by screening a randomly chosen subset of the Centre d'Etude du Polymorphisme Humain (CEPH) (Paris) YAC library with a degenerate alpha satellite probe. This YAC, which also included non-alpha satellite DNA, was modified to contain human telomeric DNA and a putative origin of replication from the human beta-globin locus. The resultant HAC vector was introduced into human cells by lipid-mediated DNA transfection, and HACs were identified that bound the active kinetochore protein CENP-E and were mitotically stable in the absence of selection for at least 100 generations. Microdissected HACs used as fluorescence in situ hybridization probes localized to the HAC itself and not to the arms of any endogenous human chromosomes, suggesting that the HAC was not formed by telomere fragmentation. Our ability to manipulate the HAC vector by recombinant genetic methods should allow us to further define the elements necessary for mammalian chromosome function.  相似文献   

13.
Holoprosencephaly (HPE) is a common developmental defect involving the brain and face. HPE is extremely heterogeneous, some cases being associated with structural anomalies of the short arm of chromosome 3. For a detailed characterization of a t(3;19)(p14.1;p13.1) breakpoint associated with HPE, we performed fluorescence in situ hybridization (FISH) analysis using yeast artificial chromosomes (YACs) mapped to the short arm of chromosome 3 from the Le Centre d'Etude du Polymorphisme Humain (CEPH) library. Three YACs mapped proximal, and one was located distal to the described breakpoint on chromosome 3. One of the chromosome 3 'Mega-YACs' spanned the translocation breakpoint. From this chimeric YAC we generated a site specific probe of about 370 kb by digestion of the YAC-DNA, which will be assessed for gene alterations that could underlie HPE in this patient.  相似文献   

14.
Chromosome painting has revealed that the human chromosome homologs in lesser apes are often fragmented and translocated to a number of different hylobatid chromosomes. We investigated the fragmented human chromosome 2 homologs in gibbons to illustrate a new strategy in mapping regional and band-specific chromosomal homologies between species. Previous research showed that the DNA library specific to human chromosome 2 paints parts of four gibbon (lar species group) chromosomes (viz., 1, 10, 12, and 16) and yields five distinct hybridization signals (including two on gibbon chromosome 16). However, the exact segments of human chromosome 2 that were translocated to the various gibbon chromosomes could not be distinguished. To determine the origin of the human chromosome 2 signals, we hybridized a microlibrary for the long arm of human chromosome 2, as well as YACs specific for most of the major bands on this chromosome, to metaphases of the gibbon. For reciprocal chromosome painting, we hybridized flow-sorted gibbon chromosome probes to human chromosome 2. Each method added additional insights that helped clarify the shuffling of human chromosome 2 material in the highly reorganized gibbon genome. There was an excellent correspondence between these complementary techniques. YAC 958d2 identified the breakpoint between human chromosome 2 material present on gibbon chromosomes 10 and 16. The reciprocal chromosome painting permitted a more complete and regional assignment of homology between segments on various gibbon chromosomes to human chromosome 2. The results show that a combination of reciprocal chromosome painting, subregional microlibraries, and band-specific probes (such as YACs) can be used to identify homologies between species and to rapidly construct detailed comparative chromosome maps, especially when the karyotypes are highly rearranged.  相似文献   

15.
16.
Loss of heterozygosity on chromosome 11q23 is observed at high frequency in human nonsmall cell lung carcinomas (NSCLCs), suggesting the presence of a tumor suppressor gene. Previous analysis of DNA from 79 patients identified a commonly deleted segment of 5 centimorgans. Complementation analysis was used to further localize a putative tumor suppressor gene. Three yeast artificial chromosome (YAC) clones spanning the minimal loss of heterozygosity region were modified, and spheroplast fusion was used to transfer them into human A549 NSCLC or murine Lewis lung carcinoma (LLC) cell lines. The resulting yeast x human hybrid cell lines containing an intact copy of a 1.6-Mb YAC, 939b12, showed reduced growth in vitro. Injection of parental A549 cells into athymic (nu/nu) mice resulted in tumor formation at 27 of 28 injection sites. In contrast, two independent 939b12-containing cell lines formed tumors at only 3 of 20 injection sites. 939b12 also suppressed tumor formation by LLC NSCLC cells in nude mice, but YACs 785e12 and 911f2, which flank 939b12, had no suppressor activity. Further localization of tumor suppression activity on 939b12 was accomplished by introduction of defined fragmentation derivatives into A549 cells and by analysis of YACs that were broken on transfer into LLC cells. This complementation approach localized tumor suppression activity to the central 700 kb of 939b12 and provides a functional assay for positional cloning of this tumor suppressor gene.  相似文献   

17.
A 2Mb contig was constructed of yeast artificial chromosomes (YACs) and P1 artificial chromosomes (PACs), extending from DXS6849 to a new marker EC7034R, 1Mb distal to UBE1, within the p11.3 region of the human X chromosome. This contig, which has on average four-fold cloned coverage, was assembled using 37 markers, including 13 new sequence tagged sites (STSs) developed from YAC and PAC end-fragments, for an average inter-marker distance of 55kb. The inferred marker order predicted from SEGMAP analysis, STS content and cell hybrid data is Xpter-EC7034R-EC8058R-FB20E11-DXS7804-D XS8308-(DXS1264, DXS1055)-DXS1003-UBE1-(UHX), PCTK1)-DXS1364-DXS1266-DXS337-SYN1-DXS6 849-cen. One (TC)n dinucleotide sequence from an end-clone was identified and found to be polymorphic (48% heterozygosity). The contig is merged with published physical maps both in the distal and in the centromeric direction of Xp, and provides reagents to aid in the DNA sequencing and the finding of genes in this region of the human genome.  相似文献   

18.
19.
This paper describes an approach that provides Internet-based support for a genome center to map human chromosome 12, as a collaboration between laboratories at the Albert Einstein College of Medicine in Bronx, New York, and the Yale University School of Medicine in New Haven, Connecticut. Informatics is well established as an important enabling technology within the genome mapping community. The goal of this paper is to use the chromosome 12 project as a case study to introduce a medical informatics audience to certain issues involved in genome informatics and in the Internet-based support of collaborative bioscience research. Central to the approach described is a shared database (DB/12) with Macintosh clients in the participating laboratories running the 4th Dimension database program as a user-friendly front end, and a Sun SPARCstation-2 server running Sybase. The central component of the database stores information about yeast artificial chromosomes (YACs), each containing a segment of human DNA from chromosome 12 to which genome markers have been mapped, such that an overlapping set of YACs (called a "contig") can be identified, along with an ordering of the markers. The approach also includes 1) a map assembly tool developed to help biologists interpret their data, proposing a ranked set of candidate maps, 2) the integration of DB/12 with external databases and tools, and 3) the dissemination of the results. This paper discusses several of the lessons learned that apply to many other areas of bioscience, and the potential role for the field of medical informatics in helping to provide such support.  相似文献   

20.
The introduction of cloned DNA into mammalian cells allows functional testing of genes contained on the fragments. In many cases, the exogenous DNA introduced into mammalian cells requires selectable genes that mark the presence of input DNA. Two new vectors, carrying mammalian selectable markers encoding for either neomycin-resistance (neo) or histidinol-resistance (hol), have been constructed for targeted integration to specific single-copy sites within yeast artificial chromosome (YAC) insert DNA. The integration cassettes comprise a single selectable yeast gene adjacent to a mammalian selectable gene, either LEU2 with neo or HIS3 with hol. Modification of the YAC occurs in yeast by transfection with linear DNA containing YAC-specific, unique, recombinogenic ends, thereby ensuring co-integration of the markers. Analysis of modified YACs confirms that both vectors correctly integrate into the targeted unique sites. The precise localization of selectable marker genes in the cloned DNA ensures the integrity of the genomic fragments during functional testing. Placement of mammalian selectable markers within the YAC insert DNA should allow for YAC-based gene targeting experiments in a variety of mammalian cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号