首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lidar ratio and depolarization ratio for cirrus clouds   总被引:4,自引:0,他引:4  
Chen WN  Chiang CW  Nee JB 《Applied optics》2002,41(30):6470-6476
We report on studies of the lidar and the depolarization ratios for cirrus clouds. The optical depth and effective lidar ratio are derived from the transmission of clouds, which is determined by comparing the backscattering signals at the cloud base and cloud top. The lidar signals were fitted to a background atmospheric density profile outside the cloud region to warrant the linear response of the return signals with the scattering media. An average lidar ratio, 29 +/- 12 sr, has been found for all clouds measured in 1999 and 2000. The height and temperature dependences ofthe lidar ratio, the optical depth, and the depolarization ratio were investigated and compared with results of LITE and PROBE. Cirrus clouds detected near the tropopause are usually optically thin and mostly subvisual. Clouds with the largest optical depths were found near 12 km with a temperature of approximately -55 degrees C. The multiple-scattering effect is considered for clouds with high optical depths, and this effect lowers the lidar ratios compared with a single-scattering condition. Lidar ratios are in the 20-40 range for clouds at heights of 12.5-15 km and are smaller than approximately 30 in height above 15 km. Clouds are usually optically thin for temperatures below approximately -65 degrees C, and in this region the optical depth tends to decrease with height. The depolarization ratio is found to increase with a height at 11-15 km and smaller than 0.3 above 16 km. The variation in the depolarization ratio with the lidar ratio was also reported. The lidar and depolarization ratios were discussed in terms of the types of hexagonal ice crystals.  相似文献   

2.
A multiple-field-of-view (MFOV) lidar measurement and solution technique has been developed to exploit the retrievable particle extinction and size information contained in the multiple-scattering contributions to aerosol lidar returns. We describe the proposed solution algorithm. The primary retrieved parameters are the extinction coefficient at the lidar wavelength and the effective particle diameter from which secondary products such as the extinction at other wavelengths and the liquid-water content (LWC) of liquid-phase clouds can be derived. The solutions are compared with true values in a series of Monte Carlo simulations and with in-cloud measurements. Good agreement is obtained for the simulations. For the field experiment, the retrieved effective droplet diameter and LWC for the available seven cases studied are on average 15% and 35% (worst case) smaller than the measured data, respectively. In the latter case, the analysis shows that the differences cannot be attributed solely to lidar inversion errors. Despite the limited penetration depth (150-300 m) of the lidar pulses, the results of the studied cases indicate that the retrieved lidar solutions remain statistically representative of measurements performed over the full cloud extent. Long-term MFOV lidar monitoring could thus become a practical and economical option for cloud statistical studies but more experimentation on more varied cloud conditions, especially for LWC, is still needed.  相似文献   

3.
Lidars with multiple fields of view (MFOVs) are promising tools for gaining information on cloud particle size. We perform a study of the information content of MFOV lidar data with the use of eigenvalue analysis. The approach we have developed permits an understanding of the main features of MFOV lidars and provides a way to relate the accuracy of particle size estimation with the measurement uncertainty and the scattering geometry such as the cloud-base height and the lidar sounding depth. Second-order scattering computations are performed for an extended range of particle sizes and for a wide range of lidar fields of view (FOVs). The results obtained allow us to specify the areas of possible applications of these lidars in cloud studies. Comparison of results obtained with polarized and cross-polarized scattered components demonstrate that the cross-polarized signal should provide a more stable retrieval and is preferable when double scattering is highly dominant. Our analysis allows for the estimation of the optimal number of FOVs in the system and their angular distribution, so this work can be a useful tool for practical MFOV lidar design.  相似文献   

4.
Roy N  Roy G 《Applied optics》2008,47(23):4235-4252
Diffractive target plates are used to emulate aerosols of known size and concentration. These target plates are used to validate and determine the sensitivity of a multiple-field-of-view lidar signal inversion technique based on double-scattering measurement to retrieve the particle size and the concentration of small optical depth clouds. We estimate that nighttime and daytime quantification (size and concentration) is possible for optical depths as low as 0.005 and 0.016, respectively. The recovery technique limiting factors are the shot noise, the laser features, the optical lens quality, the background illumination level, the background aerosol fluctuations, and the noise introduced by the lidar detector, a gated intensified camera (camera G-ICCD).  相似文献   

5.
Multiple-field-of-view (MFOV) secondary-polarization lidar signals are used to calculate the particle-size density distribution (PSD) at the base of a cloud. At the cloud base, multiple scattering is weak and single backscattering is predominant by many orders of magnitude. Because secondary polarization is a direct measure of multiple scattering, it is therefore advantageous to use secondary polarization. A mathematical relation among the PSD, the lidar fields of view, the scattering angles, and the angular depolarization is derived to facilitate use of secondary polarization. The model is supported by experimental MFOV lidar measurements carried out in a controlled environment, and its limitations and restrictions are discussed.  相似文献   

6.
We focus on improvement of the retrieval of optical properties of cirrus clouds by combining two lidar methods. We retrieve the cloud's optical depth by using independently the molecular backscattering profile below and above the cloud [molecular integration (MI) method] and the backscattering profile inside the cloud with an a priori effective lidar ratio [particle integration (PI) method]. When the MI method is reliable, the combined MI-PI method allows us to retrieve the optimal effective lidar ratio. We compare these results with Raman lidar retrievals. We then use the derived optimal effective lidar ratio for retrieval with the PI method for situations in which the MI method cannot be applied.  相似文献   

7.
We present an approach to estimating the multiple-scattering (MS) contribution to lidar return signals from clouds recorded from space that enables us to describe in more detail the return formation at the depth where first orders of scattering dominate. Estimates made have enabled us to propose a method for correcting solutions of single-scattering lidar equations for the MS contribution. We also describe an algorithm for reconstructing the profiles of the cloud scattering coefficient and the optical thickness tau under conditions of a priori uncertainties. The approach proposed is illustrated with results for optical parameters of cirrus and stratiform clouds determined from return signals calculated by the Monte Carlo method as well as from return signals acquired with the American spaceborne lidar during the Lidar In-Space Technology Experiment (LITE).  相似文献   

8.
A new detection algorithm for lidar applications has been developed. The detection is based on hyperspectral anomaly detection that is implemented for time anomaly where the question "is a target (aerosol cloud) present at range R within time t(1) to t(2)" is addressed, and for range anomaly where the question "is a target present at time t within ranges R(1) and R(2)" is addressed. A detection score significantly different in magnitude from the detection scores for background measurements suggests that an anomaly (interpreted as the presence of a target signal in space/time) exists. The algorithm employs an option for a preprocessing stage where undesired oscillations and artifacts are filtered out with a low-rank orthogonal projection technique. The filtering technique adaptively removes the one over range-squared dependence of the background contribution of the lidar signal and also aids visualization of features in the data when the signal-to-noise ratio is low. A Gaussian-mixture probability model for two hypotheses (anomaly present or absent) is computed with an expectation-maximization algorithm to produce a detection threshold and probabilities of detection and false alarm. Results of the algorithm for CO(2) lidar measurements of bioaerosol clouds Bacillus atrophaeus (formerly known as Bacillus subtilis niger, BG) and Pantoea agglomerans, Pa (formerly known as Erwinia herbicola, Eh) are shown and discussed.  相似文献   

9.
A shape classification technique for cirrus clouds that could be applied to future spaceborne lidars is presented. A ray-tracing code has been developed to simulate backscattered and depolarized lidar signals from cirrus clouds made of hexagonal-based crystals with various compositions and optical depth, taking into account multiple scattering. This code was used first to study the sensitivity of the linear depolarization rate to cloud optical and microphysical properties, then to classify particle shapes in cirrus clouds based on depolarization ratio measurements. As an example this technique has been applied to lidar measurements from 15 mid-latitude cirrus cloud cases taken in Palaiseau, France. Results show a majority of near-unity shape ratios as well as a strong correlation between shape ratios and temperature: The lowest temperatures lead to high shape ratios. The application of this technique to space-borne measurements would allow a large-scale classification of shape ratios in cirrus clouds, leading to better knowledge of the vertical variability of shapes, their dependence on temperature, and the formation processes of clouds.  相似文献   

10.
An iterative method to determine an average backscatter-to-extinction ratio and extinction coefficient simultaneously in cirrus clouds is proposed. The method is based on Klett's inversion, which is constrained by the total optical depth. A signal-to-noise ratio greater than 3 at the cloud top is required for an error in the backscatter-to-extinction ratio lower than 20% to result. The method has been tested with simulated lidar signals. An application to an experimental lidar signal is discussed.  相似文献   

11.
Flesia C  Starkov AV 《Applied optics》1996,35(15):2637-2641
The contribution of multiple scattering to a spaceborne lidar return from clear molecular atmosphere obscured by transparent upper-level crystal clouds is assessed by the use of the variance-reduction Monte Carlo technique. High anisotropy of scattering in the forward direction by polydispersions of ice crystals is the basis of a significant effect of multiple scattering for small values of the lidar receiver field of view. Because of scattering by large nonspherical crystal particles, the lidar signal backscattered from the molecular atmosphere under the cloud increases significantly compared with the single-scattering return. The ratio of the multiple-to-single-scattering contributions from the clear atmosphere hidden by the clouds is greater than from the crystal clouds themselves, and it is proportional to the values of cloud optical thickness.  相似文献   

12.
Liu Z  Voelger P  Sugimoto N 《Applied optics》2000,39(18):3120-3137
We carried out a simulation study for the observation of clouds and aerosols with the Japanese Experimental Lidar in Space Equipment (ELISE), which is a two-wavelength backscatter lidar with three detection channels. The National Space Development Agency of Japan plans to launch the ELISE on the Mission Demonstrate Satellite 2 (MDS-2). In the simulations, the lidar return signals for the ELISE are calculated for an artificial, two-dimensional atmospheric model including different types of clouds and aerosols. The signal detection processes are simulated realistically by inclusion of various sources of noise. The lidar signals that are generated are then used as input for simulations of data analysis with inversion algorithms to investigate retrieval of the optical properties of clouds and aerosols. The results demonstrate that the ELISE can provide global data on the structures and optical properties of clouds and aerosols. We also conducted an analysis of the effects of cloud inhomogeneity on retrievals from averaged lidar profiles. We show that the effects are significant for space lidar observations of optically thick broken clouds.  相似文献   

13.
Abstract

The main algorithms for back-scatter lidar equation inversion have been studied and compared in order to find the most appropriate methods for cloud optical parameter determination. Two efficient and complementary methods have been selected: Platt's method is used for optically thick clouds, while a new method, named the back-slope method, is used for optically thin clouds. The two methods can determine an average back-scatter-to-extinction ratio, the optical depth, and the back-scatter and extinction coefficients for clouds.  相似文献   

14.
Measurements of the optical extinction at a wavelength of 1.06 microm have been made in water droplet clouds. The extinction coefficient has been measured in the laboratory using two different methods simultaneously. In the first, measurements of the transmitted signal attenuation over a known path length were used. In the second the extinction coefficient was derived from the two-way attenuation of the signal reflected from a target on the opposite side of the cloud from the laser source and detector. It is found that in general the two values of the coefficient derived differ considerably, and the magnitude of the difference depends on the cloud density, the target size, and the system's optical parameters. The difference is shown to originate in the off-axis forward scattering caused by the cloud droplets, and the implications of the results on the measurement of the atmospheric extinction by reflection (lidar) techniques are discussed.  相似文献   

15.
Gelbwachs JA  Farley RW 《Applied optics》2004,43(14):2957-2961
Knowledge of cloud-base heights is important for climate studies, weather, and military operations. Conventional lidar methods monitor cloud depths by direct transmission of the beam through the cloud and sensing the backscattered returns. These techniques are limited by severe optical scattering by cloud particles to thickness <0.5 km. We have conceived of a novel lidar method measurement for thick-cloud-base altimetry from above that is not restricted by cloud scattering. The new method, known as GLITTER (an acronym for glimpses of the lidar images through the empty regions), relies on cloud porosity and diffuse reflection from land features to sense cloud bottoms. An aircraft GLITTER lidar measured cloud bases at 3.7- and 4.5-km altitudes. These initial results represent a proof-of-principle demonstration of the new lidar method.  相似文献   

16.
This study reports the altitude distribution of physical and optical properties of clouds in the lower troposphere over the urban tropical region Delhi using an UV (355 nm) lidar which is capable of operating in both day and night time. Most of the low altitude clouds are observed above the planetary boundary layer during the observation period. The low altitude cloud bottom and top height varies between 0.58 ± 0.21 and 1.5 ± 0.61 km respectively during the observation period. The depolarization ratio of the observed clouds varies from 0.18 ± 0.01 to 1.2 ± 0.58. The role of the atmospheric region below the cloud in the growth process of the cloud cell is studied. Cloud turbulence is derived to show its role in maintaining the strength of the cloud.  相似文献   

17.
Bruneau D  Pelon J 《Applied optics》2003,42(6):1101-1114
The development of remote-sensing instruments that can be used to monitor several parameters at the same time is important for the study of complex processes such as those that control climate and environment. In this paper the performance of a new concept of lidar receiver that allows for the direct measurement of aerosol and cloud optical properties simultaneously with wind velocity is investigated. This receiver uses a Mach-Zehnder interferometer. Two different configurations, either with four photometric output channels or with fringe imaging on a multichannel detector, are studied. Analytical expressions of the statistical errors are given under the assumption of Gaussian signal spectra. It is shown that similar accuracies can be achieved for both configurations. Performance modeling of the retrieval of semitransparent cloud optical scattering properties and wind velocity was done at different operation wavelengths for a Nd:YAG laser source. Results for such a lidar system onboard an aircraft flying at an altitude of 12 km show that for semitransparent clouds the best results were obtained at 355 nm, with relative standard deviations of 0.5% and 5% for the backscatter and extinction coefficients, respectively, together with a velocity accuracy of 0.2 ms(-1). The accuracy of optical properties retrieved for boundary layer aerosols are comparable, whereas the velocity accuracy is decreased to 1 ms(-1). Finally, an extrapolation to a large 355-nm spaceborne lidar shows accuracies in the range from 2.5% to 5% for the backscatter coefficient and from 10% to 15% for the extinction coefficient together with a vertical wind speed accuracy of better than 0.5 ms(-1) for semitransparent clouds and boundary layer, with a vertical resolution of 500 m and a 100 shot averaging.  相似文献   

18.
A fitting procedure for cloud lidar data processing is shown that is based on the computation of the first three moments of the vertical-backscattering (or -extinction) profile. Single-peak clouds or single cloud layers are approximated to asymmetrical Gaussians. The algorithm is particularly stable with respect to noise and processing errors, and it is much faster than the equivalent least-squares approach. Multilayer clouds can easily be treated as a sum of single asymmetrical Gaussian peaks. The method is suitable for cloud-shape parametrization in noisy lidar signatures (like those expected from satellite lidars). It also permits an improvement of cloud radiative-property computations that are based on huge lidar data sets for which storage and careful examination of single lidar profiles can't be carried out.  相似文献   

19.
Reichardt J  Reichardt S 《Applied optics》2006,45(12):2796-2804
A method is presented that permits the determination of the cloud effective particle size from Raman- or Rayleigh-integration temperature measurements that exploits the dependence of the multiple-scattering contributions to the lidar signals from heights above the cloud on the particle size of the cloud. Independent temperature information is needed for the determination of size. By use of Raman-integration temperatures, the technique is applied to cirrus measurements. The magnitude of the multiple-scattering effect and the above-cloud lidar signal strength limit the method's range of applicability to cirrus optical depths from 0.1 to 0.5. Our work implies that records of stratosphere temperature obtained with lidar may be affected by multiple scattering in clouds up to heights of 30 km and beyond.  相似文献   

20.
Bissonnette LR  Hutt DL 《Applied optics》1995,34(30):6959-6975
A novel aerosol lidar inversion method based on the use of multiple-scattering contributions measured by a multiple-field-of-view receiver is proposed. The method requires assumptions that restrict applications to aerosol particles large enough to give rise to measurable multiple scattering and depends on parameters that must be specified empirically but that have an uncertainty range of much less than the boundary value and the backscatter-to-extinction ratio of the conventional single-scattering inversion methods. The proposed method is applied to cloud measurements. The solutions obtained are the profiles of the scattering coefficient and the effective diameter of the cloud droplets. With mild assumptions on the form of the function, the full-size distribution is estimated at each range position from which the extinction coefficient at any visible and infrared wavelength and the liquid water content can be determined. Typical results on slant-path-integrated optical depth, vertical extinction profiles, and fluctuation statistics are compared with in situ data obtained in two field experiments. The inversion works well in all cases reported here, i.e., for water clouds at optical depths between ~0.1 and ~4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号