共查询到19条相似文献,搜索用时 78 毫秒
1.
时空序列预测方法综述 总被引:1,自引:0,他引:1
随着数据采集技术的进步,带有地理位置信息的时空数据迅速增长,迫切需要探索有效的时空数据建模方法。时空序列预测是时空数据建模的基础方法之一,它广泛应用于很多领域。目前缺乏对它进行综述的中文文献,因而对这些方法进行归纳和总结具有重要的研究意义。针对时空序列预测问题进行了研究,首先回顾了其应用背景和发展历程,介绍了它的相关定义及特点。然后按其类别介绍了传统的时空序列预测方法、基于传统机器学习的时空序列预测方法和基于深度学习的时空序列预测方法,并分析了这些方法的应用范围和优缺点。最后对时空序列预测未来的研究方向进行了梳理和展望,为研究者们进一步深入研究时空序列预测问题奠定了理论基础。 相似文献
2.
针对目前交通流预测精度不高的问题,提出了一种时空注意力Bi-LSTM的短时交通流预测模型。结合交通流的时空特性,将交通流序列构成时空数据矩阵作为模型的输入,利用Bi-LSTM网络关联预测时刻前后的交通流数据,捕捉交通流数据在时间维度前后潜在的联系。引入注意力机制,解决不同时刻输入特征对预测时刻交通流影响存在差异的问题。实验结果表明,相较于对比模型,所提出预测方法的预测误差低于其他模型的预测误差,其有效地提升了预测精度,体现了新模型对于短时交通流预测的有效性。 相似文献
3.
随着数据采集技术的蓬勃发展,各个领域的时空数据不断累积,迫切需要探索高效的时空数据预测方法.深度学习是一种基于人工神经网络的机器学习方法,能有效地处理大规模的复杂数据,因而研究基于深度学习的时空序列预测方法具有十分重要的意义.在这一背景下,针对已有的预测方法进行归纳和总结,首先回顾了深度学习在时空序列预测中的应用背景和... 相似文献
4.
股指预测是金融领域中一个重要课题. 随着计算能力和技术的发展, 从在线新闻中识别和量化有价值的信息为提高股指预测表现创造了机会. 本文为将关于股票指数预测框架的计量经济学文献扩展到高维文本数据提出了一种基于生成语言模型的股票指数预测框架. 该预测框架可以分为两个步骤. 首先, 使用有监督生成语言模型快速过滤噪声词语, 并将剩余文本聚合成可以充分解释股指变动的新闻指数. 其次, 将该新闻指数和历史股指数据共同作为时变参数预测模型的自变量来预测股指未来价值. 该框架不仅丰富了股票指数预测的影响因素并且揭示了这些因素与股票指数价值之间的时变动态关系. 实证研究展示了该预测框架解释能力和样本外预测能力. 在预测的6个行业股指中, 本文提出的预测框架得到的均方误差普遍小于传统时间序列和机器学习方法. 与没有考虑新闻信息的时变参数预测模型和长短期记忆网络相比该预测框架也表现了更好的预测性能. 相似文献
5.
6.
《计算机应用与软件》2017,(1)
在现代监控和视频检索系统中,跨摄像头行人跟踪问题仍然是个挑战,其原因是行人再识别时庞大的搜索空间,特别是当有大量的摄像头和行人的时候。针对跨摄像头行人再匹配计算量大,耗时久等问题,提出一种融合样本数理统计和混合高斯分布的时空关系模型。该模型可以有效地预测行人活动,即当一个行人从一个摄像头可视区域离开时,我们能够预测该行人下一次直接进入摄像头可视区域的时间和所在的出入点位置。根据预测的结果,极大地减少了行人再识别的匹配范围,从而提高匹配识别的准确率,再依赖行人的表现模型和轨迹进行行人再识别,最终实现跨摄像头行人持续跟踪的目的。实验结果表明了模型的表现与实际情况比较接近。 相似文献
7.
本文研究了基于 CARMA 模型的广义预测控制问题,分析了算法的稳态无差特性(Offsetf-ree behavious),给出了保证控制的稳态无差特性的条件,提出了改进的算法。理论分析和数字仿真结果表明改进的算法有更好的控制特性。 相似文献
8.
准确的市区交通流量预测对交通管理、城市规划和公共安全等领域具有重要意义.现有城区交通流量预测方法主要采用CNN等深度学习模型,但存在以下问题:一方面由于捕获全局空间依赖需要堆砌很多层增加网络的接受域,导致学习全局空间依赖关系的效率低下,另一方面忽略了城市区域交通流量的动态性.针对上述问题,本文提出了一种基于注意力的动态时空神经网络市区交通流量预测模型(Spatio-Temporal 3D Convolution Global Depth Residual Network, ST-3DGN).首先,该模型使用多层三维卷积捕捉城市区域交通流动性;然后,采用改进的残差结构结合空间注意力机制对远距离区域间流的空间依赖性进行建模;最后,使用了一种早期融合机制稳定了训练过程,从而进一步提高了模型ST-3DGN的性能.在两个真实公开的数据集上进行了大量实验,实验结果表明本文提出的ST-3DGN模型在预测准确性方面明显优于现有的主流交通预测模型. 相似文献
9.
无人机在执行任务时面临的飞行环境复杂多变,为了减少事故的风险,并在飞行时对异常情况进行预测和响应,研究一种基于Transformer模型的四旋翼无人机时空协同航迹预测方法。采集四旋翼无人机原始航迹,实施异常点剔除和缺失点插值处理,以优化和清理原始航迹数据,便于后续的航迹预测。结合深度学习和表示学习方法完成数据降维,基于Transformer模型实现无人机时空协同航迹的精准预测。实验测试结果表明,设计方法的预测结果虽然相对于真实的坐标点稍有偏差,然而整体结果在可接受范围内,验证集所有数据的均方误差在数据条数为300时仅为0.32m,R方测试结果最接近1,具有良好的航迹预测能力。 相似文献
10.
结合雷电数据自身特征改进DBSCAN方法,提出了一种基于DBSCAN和多项式拟合的雷电预测方法,提高预测的准确性。首先对某一时间段内的雷电数据按密度进行聚类并将每类所有雷电数据的平均坐标作为该类的中心点;然后在下一个时间段使用上一时间段的中心点作为初始选择点进行DBSCAN聚类,重复上述过程直到所有历史数据处理完毕,得到一系列不同时间段不同类别的雷电中心点;最后使用多项式拟合预测接下来的雷电可能发生的中心位置。对雷电监测网提供的雷电数据进行测试,结果表明,在数据充分的情况下,基于DBSCAN方法和多项式拟合的雷电预测准确率较令人满意,实际雷电中心点与预测中心点坐标误差约为0.1(±0.1)。 相似文献
11.
12.
针对深度学习预测模型运算大的问题,在充分挖掘交通大数据的时空相关性的基础上,提出了一种基于K-最邻近(K-nearest neighbor,KNN)与宽度学习系统(broad learning system,BLS)相结合的短时交通流预测模型。利用KNN算法筛选与预测路段时空相关性高的K个路段,将选取路段的交通流数据作为BLS模型的输入分别进行预测,对选取不同路段的预测结果进行加权,以均方根误差(root mean square error,RMSE)为最小时对应K值的结果作为最终的预测值。美国加利福尼亚州交通局PeMs交通数据库实测的交通流量数据的测试结果表明,提出的模型相比于ARIMA、WNN、LSTM、KNN-LSTM模型均方根误差平均降低46.56%,运算效率明显提高,是一种有效的短时交通流预测方法。 相似文献
13.
液压缸的工况错综复杂,为了确保液压缸的正常运行,寿命预测系统采集了大量数据以获悉液压缸的寿命状况.针对液压缸监测信号噪声大、单一分类器分类性能不佳的问题,提出了一种基于深度学习的液压缸寿命预测方法.利用DAE算法对噪声数据进行重构,以完成数据的特征提取;利用BP神经网络对数据中各特征子集进行分别训练构成弱分类器,然后采... 相似文献
14.
传统的非线性模型已经不再适用于网络流量建模,为了能够更精确地对网络流量建模,必须考虑到网络流量的特性。针对网络流量的自相似、长度分布、周期等特征进行分析,结合小波变换与时间序列模型,有效地建立流量预测模型。首先对流量的自相似和平稳性进行分析,并对长度、周期等特征进行描述,其次根据实际流量的自相似性和平稳性选择小波变换与时间序列相结合的方法进行建模,产生预测结果,最后根据长度与周期特征粗略判断预测的合理性。根据实验验证与分析,该方法具有极大的灵活性,相比单一的小波-FARIMA模型可以减少大量的运算,同时能够描述网络流量的短相关与长相关特性。 相似文献
15.
为有效发现道路交通拥堵状态,提出基于增量式贝叶斯分类器的交通拥堵判别方法.该方法把交通拥堵是否发生看成是特殊的分类问题,选取增量式贝叶斯分类器,根据以往是否发生交通拥堵的检测数据,即分别把在发生交通拥堵和不发生交通拥堵两种情况下的交通参数作为特征参数对其进行训练,然后用得到的分类器对检测到的交通参数进行分类,判别是否发生交通拥堵.微观交通仿真数据表明该方法的可行性和有效性. 相似文献
16.
将机器学习的理论和方法应用于气象预报领域,基于贝叶斯推理学习的理论,使用朴素贝叶斯分类器(Na(i)ve Bayes classifier)对降雨量预测问题进行了分类预测研究,提出了预测降雨量的朴素贝叶斯算法learn-and-classify--rainfall,将各预测因子及预测目标按照气象学分级标准进行分级,以历年气象数据为训练集,在训练集上学习各预测目标的先验概率及各预测因子的条件概率,用NBC计算出极大后验假设作为预测目标值,该算法具有鲁棒性强、易实现等优点,表现出较强的实用性和有效性,经实验表明,预测精度明显高于目前短期气候预测中采用的回归分析、聚类分析等其它预测方法.同时它还对困扰气象工作者的如何选择预测因子的问题具有指导作用. 相似文献
17.
城市路网交通速度预测是智能交通系统中的重要组成部分,其可为出行者提供实时的交通信息,对提升道路通行能力具有重要意义。现有基于图卷积网络的预测模型一定程度上加强了对一阶相邻路段间空间关联程度的挖掘,但在非一阶相邻路段关联度大于一阶相邻路段关联度的情况下,如果仍输入原始的邻接矩阵,会遗失一些相对重要的路段空间信息,无法得到较好的预测结果。为准确挖掘城市路网中的时空特性,提出一种基于全局图卷积和门控循环单元的城市路网交通速度预测模型G-GCGRU。考虑全局路网下非一阶相邻路段间的空间影响程度,利用相关性分析方法计算得到路段间的关联度矩阵,并作为新的卷积方式进一步加深对空间特征的挖掘,在此基础上,采用门控循环单元方法提取路网时间特征。使用深圳市罗湖区城市路网车速数据进行实验,结果表明,该模型预测性能优于图卷积网络(GCN)、门控循环单元(GRU)和GCN-GRU混合模型,以均方根误差为评价指标,预测精度分别提高25.3%、4.7%和2.1%。 相似文献
18.
19.
针对目前矿井冲压问题以及声发射技术的发展现状,文章总结出具有代表性的声发射特征参数和表征岩石的特性参数,通过简单的BP网络构成多神经网络分类器进行特征参数的综合,从而预测预报矿井冲压现象。 相似文献