首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 142 毫秒
1.
1工程概况新疆吉林台一级水电站混凝土面板砂砾堆石坝为1级建筑物,抗震设计烈度为9度,最大坝高157m,坝顶高程1425.8m,正常蓄水位1420.0m,坝顶宽12m,上游坝坡坡度为1∶1.7,下游坝坡1∶1.5(马道间),下游坝坡布置“之”字形上坝公路,平均坝坡坡度为1∶1.96。坝体防渗结构为钢筋混凝土面板,坝体共设有9个分区,坝体主要受力结构为砂砾料填筑体,坝体下游部分填筑堆石料。面板上游铺盖料区为大坝第一级防渗体,主要起到增长渗流通道、减少渗透的作用,填筑土料和任意料,填筑高程为1270.0~1340.0m,铺盖顶水平宽15m,其中土料宽5m,平行于面板混凝土面,…  相似文献   

2.
贺蕾铭  杜丽惠  高鑫  黄镒峰 《水力发电》2012,38(2):22-24,39
为了研究面板堆石坝在地震作用下的动力、变形特性及安全性,以潘口面板堆石坝工程为研究对象,用有限元法对其进行地震反应分析,重点研究加速度反应特性、震后残余变形及面板变形、坝体单元抗震安全性及下游坝坡的抗震安全性.分析结果表明,大坝整体抗震性能较好,满足给定地震下的抗震稳定性要求;坝顶及坝顶附近下游坡部分区域的加速度反应较大,并发生相对较大的永久变形,为该面板堆石坝工程抗震中的薄弱部位.  相似文献   

3.
基于三维非线性动力有限元分析方法,对平寨水库混凝土面板堆石坝进行地震反应特性研究。针对坝体动力加速度反应、地震残余变形、面板应力及周边缝变形以及坝坡的抗震稳定性对建于峡谷区200 m级高混凝土面板堆石坝进行综合评价,揭示峡谷地形高混凝土面板堆石坝地震反应的一般规律,研究高面板坝的抗震稳定性,并建议相应的抗震设计工程措施。  相似文献   

4.
针对地震作用下面板坝的非线性动力反应,为了准确评估大坝的极限抗震能力,从坝坡抗震稳定性、坝体震后残余变形、坝基覆盖层液化和面板接缝变形等方面探讨面板坝的地震破坏计算方法和评价标准。采用三维有限元法,对某覆盖层上高135 m的混凝土面板堆石坝进行极限抗震能力计算,结合多角度综合分析表明,大坝的极限抗震能力约为0.52g~0.54g,大坝具有较强的抗震能力。  相似文献   

5.
紫坪铺水利枢纽工程混凝土面板堆石坝设计   总被引:1,自引:0,他引:1  
紫坪铺水利枢纽工程混凝土面板堆石坝坝高156m,按8度地震设计,控制沉降及变形尤为重要,必须通过静、动力分析计算及坝料试验,并类比同类工程,才能确定较为合理的坝体结构,坝料设计参数及级配,根据实际情况,在设计中保留部分覆盖层作为坝体的一部分,有利于减少开挖和填筑,节省投资;取消了周边缝中部止水,有利于施工。  相似文献   

6.
介绍福建芹山水电站工程混凝土面板堆石坝施工期坝体过水保护设计情况 ,根据工程实际情况及特点采用双层钢筋网对临时坝体下游坝坡进行防护 ;采用钢筋石笼结合大块石对临时坝顶进行防护 .对设计过程中河道水面曲线的推求、下游坝坡水力计算及保护钢筋网结构计算方法进行了总结 ,就堆石坝施工期过水保护方案的选择 ,推荐采用钢筋网对下游坝坡进行保护的方案  相似文献   

7.
为了分析苏家河口面板堆石坝坝体在强震作用下的安全性能,建立了面板堆石坝的整体三维有限元模型和面板、趾板子模型,采用Hardin-Drnevich本构模型,对坝体在强震作用下的动力响应规律进行了详细分析。结果表明,在0.38g的强震作用下,面板堆石坝的加速度、动位移、动应力以及垂直缝和周边缝的动变形分布符合一般规律,未发现有特殊不利的现象,整体上满足抗震要求,但是坝体顶部振动的"鞭梢"效应比较明显,在3/4坝高以上坝顶区域以及靠近下游坡面处存在较小的拉应力区域。建议加强3/4坝高以上区域面板、坝顶及下游护坡的抗震工程措施,以保证大坝在强震下的安全。  相似文献   

8.
一、工程概况鲁布革水电站大坝为风化料心墙堆石坝,坝区河床宽约50m,坝基砂砾石覆盖层深度一般5m左右,坝基和两岸坝肩为白云岩和石灰岩。最大坝高103.5m,坝顶高程1138m,坝顶长217.3m,坝顶宽10m并设有防浪墙,水库总库容1.11亿m~3,有效库容0.74亿m~3。上下游坝坡均为1:1.8。上游坝坡以外为施工高水围堰的两层反滤料、风化料斜墙,保护层石碴料,围堰堆石料是坝体的堆石料一部份。下游围堰距坝趾51m处,围堰为粘土心墙及石碴料填筑。下游坝趾设有混凝土量水堰。坝两岸设置有上中层灌浆洞,沿坝轴线设有单层帷幕  相似文献   

9.
苏家河口水电站混凝土面板堆石坝坝体填筑质量管理综述   总被引:1,自引:0,他引:1  
1 概述 苏家河口水电站大坝为混凝土面板堆石坝,最大坝高130 m,坝顶长度443.917 m,坝顶宽度10.00 m,坝顶设高为4.2 m的钢筋混凝土防浪墙,坝体上游坡为1:1.4,下游综合坝坡为1:1.712.下游面设马道及坝后公路,道路间坝坡设干砌石护坡.  相似文献   

10.
九甸峡水利枢纽工程混凝土面板堆石坝最大坝高136.5 m,坝址区地震烈度高,河谷狭窄,岸坡陡峻,河床分布深52~54 m、宽30~50 m左右的深厚覆盖层,为目前国内在深厚覆盖层修建的最高面板堆石坝.文中介绍了该混凝土面板堆石坝的布置、坝体分区、坝料设计、趾板结构、周边缝结构设计等,特别研究比较了河床深厚覆盖层平趾板处理措施和采取防渗墙截渗的结构特点,同时对于在覆盖层上修建高面板堆石坝进行了有益的探索.  相似文献   

11.
本文采用三维有限元计算方法和沈珠江动本构模型,研究某高烈度区大倾角坝基上高面板堆石坝的动反应特性。首先,讨论了地震波水平输入角度对面板堆石坝动反应的影响,以地震过程中坝顶峰值加速度,坝体最大动位移与最大动应力,面板最大变形值及最大动应力五个指标作为主要评判标准,对比地震波在八个不同水平输入角度下坝体动反应的大小,发现水平输入角度每改变45°,五个指标均随之变化,呈现"W"型变化规律,180°为最不利输入角度,各项指标都处于峰值点。然后,针对处于大倾角坝基上的抽水蓄能高面板坝进行了坝体动反应和坝坡稳定性分析,获得了堆石坝反应加速度随着坝高的增加而增大,以及震后存在残余变形等地震反应特性。最后验证了该工程坝体在地震反应过程中的安全性。研究结果可为高烈度地区倾斜坝基上高面板坝的动反应设计提供参考。  相似文献   

12.
目前土石坝极限抗震能力的评判指标尚不统一,评价标准仍不明确,且缺乏合理的依据。本文基于地震反应分析,从坝坡抗震稳定性和地震滑移变形对土石坝的极限抗震能力进行了研究,提出以地震滑移变形发生突变作为土石坝抗震稳定极限能力的判定标准。以某沥青混凝土心墙堆石坝为例进行了计算分析,当地震峰值加速度为0.55g时,上、下游坝坡F_s1.0的累积时间分别为2.5 s和2.8 s,地震滑移变形分别为0.46 m和0.55 m,并产生了明显的突变。由此,可判定大坝的极限抗震能力为0.55 g。结果表明,土石坝的抗震薄弱部位位于坝顶1/5坝高范围内,符合实际震害的一般规律,建议该区域应采取合理的抗震措施。  相似文献   

13.
对于强震区坐落在深厚覆盖层(深度超过50 m)上的高土石坝,通过拟静力稳定分析结果初步判定其抗震稳定性是抗震设计的主要内容,其中水平向地震惯性力沿坝基覆盖层至坝顶的动态分布系数是关键。然而,现行《水工建筑物抗震设计标准》(GB 51247—2018)中地震惯性力动态分布系数多基于坐落在基岩上的高土石坝的动力响应规律确定,现有动态分布系数忽略了深厚覆盖层和地震动强度对地震动传播规律的影响。因此,以坐落在深厚砂砾石覆盖层上150 m级高黏土心墙堆石坝为研究对象,结合现行土石坝设计规范和国内已建高土石坝实例,基于统计平均的方法确定了坝顶宽度、坝料分区、坝坡坡比、覆盖层材料的静、动力特性等关键参数,深入探讨了150 m级高黏土心墙堆石坝在小震(0.1 g)、中震(0.2 g)和大震(0.4 g)规范谱地震动作用下不同深度砂砾石料覆盖层的动力响应分布规律,进而总结归纳出不同深度覆盖层下150 m级高黏土心墙堆石坝的水平向地震惯性力的动态分布系数,将其引入到拟静力法稳定分析中,最后基于最危险滑动面和最小安全系数与现行规范所得结果进行对比分析。研究结果表明,小震(0.1 g)和中震(0.2 g)下采用文中推荐的考虑深厚覆盖层和地震动输入强度影响的水平向地震惯性力动态分布系数时将得到更符合工程实际的评价结果。研究成果可为深厚覆盖层上的高土石坝抗震设计提供参考依据。  相似文献   

14.
本文采用了有效的地震输入方式和等效粘弹性奉构模型,对深覆盖层(147.95m)沥青混凝土心墙土石坝进行了有限元动态特性分析,研究了强震区深覆盖层问题中坝体及防渗墙的应力和变形。分析结果表明:坝体在地震作用下不会出现严重地震破坏,但不能排除坝体发生局部裂缝的可能性;防渗墙存在应力集中区,应对这些区域进行局部加固。  相似文献   

15.
紫坪铺混凝土面板堆石坝震损特性分析   总被引:2,自引:0,他引:2  
紫坪铺面板坝经受了超设计标准的地震考验,经震后及时修复,目前其监测仪器运行正常,完好率达83%。震后大坝坝顶一次产生了81cm的明显震陷和超过30cm的水平位移,目前坝体变形已趋于稳定,但面板脱空及施工缝错抬现象明显。紫坪铺大坝具有较强的抗震能力,地震后坝体总体稳定,且堆石密度提高,有利于震后永久变形的减小。  相似文献   

16.
筑坝材料的静、动力工程特性与土石坝静力和地震动力分析及评价方法研究是岩土力学的重要内容,岩土力学随土石坝建设的发展而发展。本文总结了高土石坝建设发展的一些新情况和新趋势,提出了若干需要重点研究的应用基础问题,包括:覆盖层工程力学特性研究;粗粒料工程力学特性试验模拟方法研究;复杂高应力下筑坝材料的变形和强度特性研究;土石坝堆石料长期变形问题研究;覆盖层与上部建筑物相互作用的数值分析方法研究;高土石坝综合评价方法和评价标准研究;覆盖层处理技术研究;高土石坝抗震研究等。  相似文献   

17.
结合某深厚覆盖层上的面板堆石坝工程实例,基于有限元分析软件ABAQUS,采用三维非线性有限元数值分析法,对其静力工作形态进行了深入的研究,并针对此工程总结了修建于深覆盖层上的高混凝土面板堆石坝应力变形的一般规律,论证了此大坝结构设计的合理性,为设计和施工提供了理论依据,同时,也为深覆盖层上面板堆石坝的动力特性分析提供一些前期准备.  相似文献   

18.
为研究沥青混凝土心墙坝抗震能力,以新疆尼雅水库为例,利用大型三轴仪进行动模量阻尼比和永久变形试验,分析筑坝材料的动力特性,并采用等效线性黏-弹性模型和大工双曲线残余变形模型对坝体进行地震反应分析.结果表明:砂砾料和过渡料的最大动剪切模量比堆石料高4% ~11%,而堆石料的最大阻尼比比砂砾料和过渡料高4% ~14%;心墙...  相似文献   

19.
沥青混凝土心墙堆石坝可就地取材,工程造价低,在我国西部强震区被广泛应用。因其工作条件复杂,且筑坝材料具有非线性特性,故其地震安全评价问题一直受到工程界的关注。因此开展地震作用下沥青混凝土心墙堆石坝的可靠度分析具有理论意义和工程应用价值。本文以坝体裂缝作为坝体地震变形破坏的判断依据,将坝体地震变形倾度作为地震安全的控制指标,建立了基于倾度法和中心点法的沥青混凝土心墙堆石坝地震变形可靠度分析方法。以某98 m高的沥青混凝土心墙堆石坝为例,进行了地震变形的可靠度分析。结果表明:基于本文沥青混凝土心墙堆石坝地震变形可靠度分析方法,获得的大坝设计基准期内的年计地震变形失效概率py=2.156×10-6,对应的可靠指标β=4.6,满足规范要求;采用倾度法和中心点法相结合,可以考虑坝体材料分区的影响,获得较为准确的土石坝地震变形失效概率结果,对土石坝具有普遍适用性。本文提出的土石坝坝体地震变形可靠度分析方法,可为沥青混凝土心墙堆石坝抗震设计、地震风险分析以及风险等级的建立提供依据。  相似文献   

20.
为研究地震作用对混凝土面板堆石坝采用的混凝土是否加筋有何影响,基于堆石料的静动力大三轴试验结果,构造了能考虑剪应力水平影响和堆石料颗粒破碎的一个简洁塑性模量表达式,建立了适用于堆石料的广义塑性本构模型。本构模型模拟曲线与三轴静动力试验曲线的对比结果表明:该模型能较好地模拟堆石料在低围压下的剪胀性和高围压下的剪缩性,以及在循环荷载作用下的滞回效应、硬化特性和循环致密性等复杂应力状态。此外,利用该模型的高面板堆石坝动力有限元计算结果表明:加筋前后地震加速度和永久变形的分布规律一致。加筋对大坝的地震反应加速度影响较小,却可有效地减小大坝的地震永久变形;加筋对顺河向地震永久变形的抑制作用大于震陷。加筋间距越小,大坝的地震永久变形越小,但地震永久变形的减小幅度逐渐降低。研究成果可为混凝土面板堆石坝的施工设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号