首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
为实现对复杂几何、复杂能谱组件的精细计算,提出了一种基于特征线的超细群慢化方程求解方法。通过耦合特征线法中的固定源计算,在共振能量范围内建立超细群慢化方程,通过精细能谱获得复杂结构下的共振自屏截面。对典型压水堆栅元问题、带有温度分布的栅元问题、燃料内部存在不均匀性的栅元问题以及板状燃料组件问题进行了计算。结果表明,基于特征线的超细群慢化方程求解方法可精确计算复杂几何、复杂能谱问题,为共振计算提供基准。  相似文献   

2.
针对压水堆中不同燃料类型相邻的燃料组件中的出现的高阶共振干涉现象进行了研究。通过超细群求解慢化方程和嵌入式共振计算方法,对该类问题进行了计算。通过对精细能谱形状和多群共振截面计算误差的分析,结果表明,高阶共振干涉现象随着慢化剂密度降低而增强,对共振计算的精度有一定的影响。在二氧化铀(UO2)与钚铀氧化物混合燃料(MOX)的混合组件中,截面的最大相对误差达10%。通过对嵌入式共振计算方法进行改进,可以有效地处理该共振干涉现象,提高具有复杂设计的燃料组件的共振计算精度。结果表明,在多种工况下的多燃料混合组件中,共振截面的相对误差降低至3%以下。  相似文献   

3.
共振干涉现象广泛存在于反应堆系统中,是影响共振计算精度的重要因素之一。当前提出的干涉因子方法,其计算效率难以适用于燃耗过程中的复杂燃料成分。基于改进的伪核素理论与超细群慢化方程求解程序,提出了一种针对实际压水堆燃耗过程的快速共振干涉计算方法。对于燃耗过程中的复杂燃料成分,在均匀问题和压水堆栅元几何下进行了共振自屏分析。结果表明,该方法的计算精度与严格的超细群计算及蒙特卡罗方法相当,效率上优于干涉因子方法,适用于压水堆燃耗过程中的快速共振计算。  相似文献   

4.
子群法与特征线法结合的中子共振计算   总被引:1,自引:1,他引:0  
黄世恩  王侃  姚栋 《原子能科学技术》2010,44(10):1201-1206
传统的中子共振自屏计算方法采用了有理近似,局限于处理简单的共振模型,在处理复杂燃料栅元/组件时会引入较大误差。为提高复杂情况下共振计算的精度,将子群法共振模型与特征线方法结合,推导了子群法-特征线法方程。基于WIMSD格式的69群数据库,编制了可用于任意二维几何中子共振计算的SGMOC程序。通过数值验证表明,该程序计算结果与MCNP程序计算结果吻合良好,具有较高的计算精度与几何通用性。  相似文献   

5.
传统的共振计算方法试图对能谱进行诸多近似和预测来实现有效共振自屏截面的计算,但传统方法存在精度与效率难以兼顾的问题。本文采用广义并群理论和降阶模型方法,挖掘复杂能谱的特征,降低共振计算的复杂程度。通过对典型背景截面的超细群能谱的提取,建立能谱样本空间。通过奇异值分解和低秩近似,有效获取代表能谱特征的正交基函数。通过求解考虑正交基函数分布权重下的宽群角通量展开系数,实现目标问题下超细群能谱的重构,并用精细能谱并群计算得到了有效共振自屏截面。初步结果表明,基于能谱降阶模型的共振计算方法能有效预测共振自屏截面,其计算效率与超细群方法相比具备一定的优势。  相似文献   

6.
全陶瓷微密封(FCM)燃料是一种弥散颗粒燃料。由于弥散颗粒燃料存在双重非均匀性,传统的确定论方法及蒙特卡罗方法皆难以处理这种双重非均匀效应以获得有效多群截面。本文基于超细群方法建立FCM燃料的有效多群截面计算方法。为描述燃料棒内TRISO颗粒的非均匀性,在共振能量段,通过采用超细群方法求解包含TRISO颗粒的一维球模型得到超细群缺陷因子,通过超细群缺陷因子修正所有核素的超细群截面即可将颗粒和基质均匀化。由于TRISO颗粒在热能区也存在较强的自屏效应,在热能区,利用穿透概率及碰撞概率等价得到多群缺陷因子,通过多群缺陷因子修正所有核素的多群截面将燃料和基质均匀化。均匀化后的FCM燃料组件即可视为普通压水堆燃料组件进行共振计算。利用丹可夫修正因子等价得到FCM燃料组件各燃料棒的等效一维棒模型,对一维棒模型求解超细群慢化方程从而得到共振能量段的有效自屏截面。数值结果表明,该方法能有效处理FCM燃料的双重非均匀性,得到精确的有效自屏截面。  相似文献   

7.
全陶瓷微密封(FCM)燃料是一种弥散颗粒燃料。由于弥散颗粒燃料存在双重非均匀性,传统的确定论方法及蒙特卡罗方法皆难以处理这种双重非均匀效应以获得有效多群截面。本文基于超细群方法建立FCM燃料的有效多群截面计算方法。为描述燃料棒内TRISO颗粒的非均匀性,在共振能量段,通过采用超细群方法求解包含TRISO颗粒的一维球模型得到超细群缺陷因子,通过超细群缺陷因子修正所有核素的超细群截面即可将颗粒和基质均匀化。由于TRISO颗粒在热能区也存在较强的自屏效应,在热能区,利用穿透概率及碰撞概率等价得到多群缺陷因子,通过多群缺陷因子修正所有核素的多群截面将燃料和基质均匀化。均匀化后的FCM燃料组件即可视为普通压水堆燃料组件进行共振计算。利用丹可夫修正因子等价得到FCM燃料组件各燃料棒的等效一维棒模型,对一维棒模型求解超细群慢化方程从而得到共振能量段的有效自屏截面。数值结果表明,该方法能有效处理FCM燃料的双重非均匀性,得到精确的有效自屏截面。  相似文献   

8.
为精确预测燃料棒径向不等温分布下的238U共振吸收截面,提出了一种基于求解超细群慢化方程的共振计算方法。该方法通过温度扰动模型,将径向不等温分布对燃料棒能谱的影响分解为每个径向子区对燃料棒能谱的独立影响,从而实现了对不等温分布下的径向相关共振吸收截面的预测。数值结果表明,以MCNP5统计结果为基准,温度扰动模型对238U共振吸收截面的计算精度相比于传统的均匀碰撞概率超细群方法更高,共振吸收截面的相对偏差在2%以下。温度扰动模型适合进行不等温分布下燃料棒径向的238U共振吸收截面的精确计算。  相似文献   

9.
为精确预测燃料棒径向不等温分布下的~(238)U共振吸收截面,提出了一种基于求解超细群慢化方程的共振计算方法。该方法通过温度扰动模型,将径向不等温分布对燃料棒能谱的影响分解为每个径向子区对燃料棒能谱的独立影响,从而实现了对不等温分布下的径向相关共振吸收截面的预测。数值结果表明,以MCNP5统计结果为基准,温度扰动模型对~(238)U共振吸收截面的计算精度相比于传统的均匀碰撞概率超细群方法更高,共振吸收截面的相对偏差在2%以下。温度扰动模型适合进行不等温分布下燃料棒径向的~(238)U共振吸收截面的精确计算。  相似文献   

10.
基于各向同性散射的中子输运方程特征线方法,计算实际组件能谱时经输运修正后,散射矩阵中P0自散射截面可能出现一定量的负值,影响数值稳定性。本文开发了P1各向异性散射特征线方法,并研制了计算程序PEACH-A。压水堆栅元基准问题的验证结果表明,PEACH-A程序具有较高的计算精度。对典型富集度的UO_2、MOX燃料栅元及其组合问题进行了敏感性分析,结果表明,针对MOX燃料及富集度差异较大的UO_2燃料栅元组合问题有必要采用P1各向异性散射。  相似文献   

11.
In order to achieve highly accurate resonance calculations with short computation time , a new ultra-fine-group resonance calculation method is developed. The ultra-fine-group method has a limitation in practical design applications of large and complicated geometries in fuel assembly level due to its long computation time. Therefore, we developed an enhanced one-dimensional (1D) cylindrical pin-cell model to achieve both high calculation accuracy and short computation time. In the enhanced 1D cylindrical pin-cell modeling, moderator radius is adjusted to preserve each fuel pellet's Dancoff factor obtained in the exact 2D fuel lattice arrangement. We call this model the ‘equivalent Dancoff-factor’ cell model. This model can accurately consider heterogeneity effects in PWR fuel assemblies and can represent effective cross sections obtained by the ultra-fine-group calculations in the complicated 2D square lattice arrangements. The present method is implemented with Mitsubishi Heavy Industries, Ltd. lattice physics code GALAXY. From the comparisons of neutron multiplication factors and pin power distributions between GALAXY and a continuous-energy Monte Carlo code, applicability of the present method to lattice physics calculations is confirmed. Application of GALAXY with the present method achieves high accuracy with short computation time in normal operations and accident conditions including low moderator density conditions.  相似文献   

12.
A unified resonance self-shielding method, which can treat general sub-divided fuel regions, is developed for lattice physics calculations in reactor physics field. In a past study, a hybrid resonance treatment has been developed by theoretically integrating equivalence theory and ultra-fine-group slowing-down calculation. It can be applied to a wide range of neutron spectrum conditions including low moderator density ranges in severe accident states, as long as each fuel region is not sub-divided. In order to extend the method for radially and azimuthally sub-divided multi-region geometry, a new resonance treatment is established by incorporating the essence of sub-group method. The present method is composed of two-step flux calculation, i.e. ‘coarse geometry + fine energy’ (first step) and ‘fine geometry + coarse energy’ (second step) calculations. The first step corresponds to a hybrid model of the equivalence theory and the ultra-fine-group calculation, and the second step corresponds to the sub-group method. From the verification results, effective cross-sections by the new method show good agreement with the continuous energy Monte-Carlo results for various multi-region geometries including non-uniform fuel compositions and temperature distributions. The present method can accurately generate effective cross-sections with short computation time in general lattice physics calculations.  相似文献   

13.
The resonance calculation method using the ultra-fine-group spectrum calculations in the AEGIS code is explained in detail. By a simple benchmark problem, it is verified that the effect of anisotropic scattering on effective cross-sections is not very large and the isotropic scattering source approximation is adequate in practical resonance calculations in LWRs. Furthermore, some efficient numerical algorithms in the ultra-fine-group calculations to reduce the computation time without large degeneration of accuracy are presented. In addition, the SPH method for energy collapsing of cross-sections is adopted in the AEGIS code to reduce the error of energy collapsing.

Through the comparison with continuous-energy Monte-Calro calculation in the pin-cell geometry, the validity of the resonance treatment in the AEGIS code is verified.  相似文献   

14.
A new hybrid resonance self-shielding treatment method in reactor physics field is developed by integrating equivalence theory and ultra-fine-group slowing-down calculation from the theoretical point of view. In the conventional equivalence theory, scattering source approximation and taking no account of resonance interference effect cause prediction error of effective cross-section. By reviewing the derivation scheme of neutron flux in the equivalence theory, the essence of the ultra-fine-group treatment is effectively incorporated. A new form of energy-dependent flux is based on multi-term rational equation, but the scattering source can be solved by the way similar to the slowing-down equation. The accurate non-fuel flux is also considered without direct heterogeneous calculation. The new method can also efficiently eliminate the multi-group condensation error by a semi-analytical reaction rate preservation scheme between ultra-fine and multi-group treatments. The present method is implemented in Mitsubishi Heavy Industries, Ltd. lattice physics code GALAXY. From comparisons of neutronics parameters between GALAXY and a continuous energy Monte-Carlo code, applicability of the new method for lattice physics calculations is confirmed. GALAXY achieves high accuracy with short computation time. Therefore, it can be efficiently applied to generation of the nuclear constants used in the nuclear design and safety analysis of commercial light water reactors.  相似文献   

15.
A new correction technique to capture the spectral interference effect on collapsed cross sections, which focuses on application to the pin-by-pin boiling water reactor (BWR) core analysis, is proposed. The spectral interference effect, which is caused by adjacent loadings of different types of fuel assemblies, has relationship with variations of neutron leakage in each pin-cell from the viewpoint of neutron balance. Variation of neutron leakage affects neutron spectrum and thus the neutron leakage is considered to be important to correct coarse-group cross sections used in core calculations. We focus on the neutron leakage in each pin-cell and use it as a correction index (i.e., a leakage index (LI)), which is defined as the volume-averaged neutron leakage in a pin-cell. By utilizing the leakage index, we represent the variations of coarse-group cross sections as the linear combination of LIs. In order to verify and discuss the applicability of the present correction technique, two-dimensional benchmark calculations considering typical characteristics of BWR cores are carried out. From the calculation results, the present correction technique well reproduces the reference coarse-group cross sections and improves the calculation accuracies.  相似文献   

16.
The pseudo-resonant-nuclide subgroup method (PRNSM) based global–local self-shielding calculation scheme is proposed to simultaneously resolve the local self-shielding effects (including spatial self-shielding effect and the resonance interference effect) for large-scale problems in reactor physics calculations. This method splits self-shielding calculation into global calculations and local calculations. The global calculations obtain the Dancoff correction factor for each pin cell by neutron current method. Then an equivalent one-dimensional (1D) cylindrical problem for each pin cell is isolated from the lattice system by preserving Dancoff correction factor. The local calculation is to perform self-shielding calculations of the equivalent 1D cylindrical problem by the PRNSM. The numerical results show that PRNSM obtains accurate spatial dependent self-shielded cross sections and improves the accuracy of dealing with the resonance interference over the conventional Bondarenko iteration method and the resonance interference factor method. Furthermore, because both global and local calculation is linearly proportional to the size of problems, the global–local calculation scheme could be applied to large-scale problems.  相似文献   

17.
The improved subgroup method coupled with Sanchez-Pomraning method (ISSP) was proposed for the resonance self-shielding calculation of double heterogeneity (DH) problems. ISSP employed a fine-mesh energy structure to avoid the extra resonance interference treatment. The DH subgroup fixed source equations and the neutron slowing-down equations were established to obtain the effective resonance cross-section in particle and matrix. Finally, the transport calculation under DH condition was carried out. By contrast with the continuous-energy Monte Carlo method and the ultra-fine group method, numerical verification results indicate that ISSP could provide resonance cross-section in DH condition accurately and effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号