首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
冯玉坤 《吉林水利》2022,(3):24-27,32
为控制和改善由于北方寒区冻融过程所导致的渠道基土的冻胀变形等现象,丰富盐碱渠基土改良相关工程的理论和经验.研究采用室内试验的方式,选择能对生石灰改良渠基土冻胀融沉特征产生影响的生石灰掺量、冷端温度以及含水率3个因素,在不同梯度水平条件下进行单因素冻融试验,通过探讨各因素对生石灰改良粉质粘土冻胀率和融沉系数的影响规律,确...  相似文献   

2.
利用MIDAS有限元分析平台,结合南水北调中线总干渠某高填方渠段工程实际,建立了填方渠道分层填筑施工的三维有限元分析模型。分析结果表明,渠道分层填筑施工时变形影响区域主要集中在渠道底部中心部位;随着填筑高度不断增加,变形影响范围由初始的渠道外坡脚向渠道底部中心转移,最后发生在渠道底部中心部位;渠道内外坡面变形也随着填筑高度的增加而相应增大。根据填筑施工模拟结果,在渠道填筑初期,内外坡脚和渠道底部中心部位应严格按照设计参数进行填筑施工,并适当加强质量控制措施,确保渠道填筑施工及后期运行安全。  相似文献   

3.
为了量化渠基土体中的水分在冻融过程中的迁移及其分布规律,揭示渠基土体的微观冻胀特性,选取渠基土体不同部位的原状土样,进行冻融试验,采用CT扫描技术,监测研究渠基土样冻融过程中的水分迁移及其孔隙水分布规律,进一步探究渠基土体的微观冻胀特性。结果表明:冻融过程中土样深度16~18 cm处的含水率较高,产生了水分积聚。冻结过程中,土体的微观孔隙结构发生了明显变化,同时发生了裂缝的张开和闭合。在融化阶段,由于冻结水快速融化,土体发生融沉,最大融沉量为6.78 mm。研究成果揭示了渠基土体单向冻融过程中的水分迁移规律、孔隙水的分布状态及其冻胀微观特性,为季节冻土区输水渠道的抗冻胀设计提供了理论基础。  相似文献   

4.
针对宁夏引黄灌区混凝土衬砌结构冻胀破坏严重现状,以渠基土为典型湿陷性黄土的弧底梯形砼衬砌渠道为研究对象,建立考虑法向冻结力分布的弧底梯形混凝土衬砌渠道冻胀破坏力学模型,计算最大法向冻结力、最大法向冻胀力和衬砌板内力的表达式,并对衬砌板厚度进行验算。结果表明,渠坡板法向冻结力从渠顶至坡脚位置呈线性增大分布,坡板以受剪应力为主,在自重和法向冻结力共同作用下容易产生冻胀裂缝。渠底板受两端坡板约束,以受轴向压力为主,法向冻结力呈均匀分布。  相似文献   

5.
景电工程干渠块石换填措施抗冻融效果评价   总被引:2,自引:0,他引:2  
为解决景电工程干渠红砂土基础在地下水浅埋条件下冬季冻胀量大、暖季融沉滑塌严重的问题,对渠道基础采用块石换填的抗冻胀融沉方案。根据地下水埋深与渠基土冻胀、融沉强度的关系,得到冻土的本构方程,采用COMSOL有限元软件对换填前和换填后渠道衬砌的位移场和应力场进行了对比计算。结果表明:换填后的渠坡、渠底衬砌板法向位移最大值相对于换填前分别减小了53.8%、78.0%;换填后,渠道衬砌最大法向冻胀力和切向冻结力相比换填前分别减小了73.2%和82.8%,且整体分布更均匀。在地下水浅埋和土体遇水软化的水文地质条件下,块石换填渠道具基础有优良的抗冻胀融沉效果。  相似文献   

6.
针对刚性衬砌渠道冻胀破坏问题,选取宁夏盐环定扬黄灌区衬砌渠道为研究对象,在考虑相变及水分迁移模型基础上,考虑高地下水位对冻胀的影响,建立考虑水分迁移及地下水影响的数学物理模型,并采用Comsol Mutiphysics有限元软件对梯形渠道混凝土衬砌进行冻胀数值模拟,分别从温度场、位移场和应力场对刚性衬砌渠道冻胀破坏等方面进行了研究分析。结果表明:阴坡、阳坡冻胀量较大,渠底较小,渠底中部、渠坡1/3坡板长度处冻胀量分别达到最大值。渠底中部的法向冻胀力较小,两边逐渐增大,阴坡、阳坡的法向冻胀力分布均匀;渠底的切向冻结力成线性分布。阴坡、阳坡靠近坡脚处切向冻结力较大,左、右两端坡顶处切向冻结力较小,渠底衬砌板和两侧衬砌板属于压弯组合变形构件。  相似文献   

7.
汾河灌区现浇混凝土渠道衬砌冻胀试验研究   总被引:1,自引:0,他引:1  
王婧 《山西水利》2010,26(1):53-54
冻胀破坏是渠道工程建设和管理的重要制约因素,对弧形坡角梯形现浇混凝土渠道冻胀过程进行原型观测试验,通过统计试验场气温、渠基土含水率和渠道观测点位移量,分析渠床冻深、刚性衬砌层变形及受力变化原因,初步探究了渠道衬砌层冻胀破坏变形的产生机理并提出了相应的建议。  相似文献   

8.
李超 《水利天地》2012,(6):30-31
我国北方大部分地区每年约在11月进入冻结期,冻融作用可持续5个月左右。冻结层先形成于地表,逐渐由地表向深部发展,最大冻土层发育深度可达1.0-1.5m。各类工程建筑物因而遭受严重冻胀,其中水工建筑物的冻害最为普遍和严重,冻胀、融沉、滑坡等作用对涵、闸、渡槽、渠道、桥梁和挡土墙等中小型建筑物的破坏更为突出,冻害的表现形式颇多。许多水工建筑物往往在建成后第一年的冬季即出现冻胀上抬、裂缝和严重的变形。由于水工建筑物经常通水,这些冻害现象逐年加剧,有的3~5年即被完全破坏。有的工程虽未完全损毁,但因需年年维修而耗费大量资金和人力。  相似文献   

9.
针对陕甘宁盐环定扬黄工程三道井干渠破坏严重问题,布设6个冻胀观测断面,通过气温、地温、冻深、冻胀量、基土含水率等主要指标观测,分析了各影响因素的变化过程和变化规律,提出渠道坡脚和渠底是冻胀变形最为严重的部位,应重点进行防护;基土含水率是冻胀破坏的决定性因素,减轻渠道冻害关键在于降低基土含水率。根据试验结果,提出三道井干渠在更新改造时采用聚苯乙烯板的保温防冻胀措施,在冻胀破坏最为严重的坡脚部位采用20 cm厚现浇混凝土弧形坡脚+5 cm厚聚苯乙烯板,全断面采用0.3 mm厚复合土工膜防渗以减少渗漏引起的基土含水率升高等措施,并付诸实施,效果显著。  相似文献   

10.
为改善灌区末级渠道输水条件,延长衬砌工程使用寿命,实现灌区水资源的高效利用,通过4条农渠的渠槽变形和防冻胀等试验,并结合经济效益评价,研究了竹塑渠道替代传统混凝土材料进行末级渠道防渗衬砌的可行性和可靠性。结果表明:竹塑渠槽壁厚达到6 mm时,具有准弹性体的性质,刚度良好,且具有较强的抗变形能力。整个冻融期试验的竹塑渠道中最大水平位移为8.8 mm,最大垂直位移为13.3 mm。在20 a计算周期里,竹塑渠道综合投资比混凝土渠道投资多8.53%。竹塑渠道变形小、抗冻胀能力强,能提高输水效率,在宁夏灌区具有较好的应用前景。  相似文献   

11.
为研究节理条件下采空区对岩质斜坡变形破坏过程的影响,以贵州省清镇市小二岩危岩体为研究对象,运用PFC~(2D)模拟采空区影响下岩质斜坡渐进破坏过程,并在模拟过程中分别对斜坡坡顶、坡脚、采空区、采空区上方地表四个位置进行监测。初步研究发现:小二岩斜坡为缓倾上硬下软型结构,由于地下采煤导致小二岩斜坡出现变形,在开采作用下其主要的变形方式有采空沉陷和坡顶拉裂;研究区内节理裂隙发育,岩体被节理切割成块体,地下开采后,引起坡顶岩体应力变化,拉裂隙沿节理面产生,岩体发生累进性破坏,为崩塌的发生提供了积极条件;分析认为在对斜坡体进行节理化后,节理对于斜坡的变形具有指引作用,斜坡在采空区变形位置沿节理向陡崖顶部产生大量的拉张裂隙并且最终贯通,与小二岩斜坡的实际变形相近。  相似文献   

12.
在考虑坡体前缘抗滑桩锚索对坡体下滑的阻挡作用的基础上,提出滑坡变形总量与变形速率预警指标。以四川岷江电化有限公司厂区西侧滑坡为例,利用强度折减法,通过FLAC数值模拟得到滑坡失稳破坏时的坡向位移,之后减去锚索所能承受的最大变形量,拟定滑坡坡表变形总量预警阈值,并且根据前人统计研究得到的一般性滑坡变形速率与滑坡实际监测资料分析,拟定滑坡坡表变形速率预警阈值。计算结果表明:监测点JC01坡表变形总量蓝色、黄色、橙色与红色预警阈值分别为0.00 cm、38.84 cm、58.26 cm、77.68 cm;监测点JC02坡表变形总量蓝色、黄色、橙色与红色预警阈值分别为0.00 cm、63.00 cm、94.51 cm、126.01 cm;监测点JC03坡表变形总量蓝色、黄色、橙色与红色预警阈值分别为0.00 cm、46.84 cm、70.26 cm、93.68 cm;滑坡的坡表变形速率蓝色、黄色、橙色与红色预警阈值分别为0.00 mm/d、0.11 mm/d、1.61 mm/d、10.00 mm/d。研究结果为四川岷江电化有限公司厂区西侧滑坡预警阈值的拟定提供了相关参考与依据。  相似文献   

13.
针对西北地区输水明渠易发生冻胀破坏的问题,依据热传导和水分迁移理论建立冻结期渠基土温度场,以分析渠道内过水对温度场分布的影响为目标,以新疆玛纳斯河四级水电站引水渠为典型案例,应用有限元软件进行温度场的模拟,并将结果与相关文献中的数据及破坏类型进行比对,验证模拟的合理性。结果表明:渠道内是否过水对渠道的温度场有显著的影响,主要是其温度场的分层发生变化且其温度线也出现了强烈波动。经实地观察发现,输水明渠渠基土体易产生较大的冻胀变形导致衬砌板胀裂、隆起及滑塌等破坏十分严重的位置与模拟中温度场发生变化的位置基本一致,且满足误差要求。用冻结期渠基土温度场变化来预测输水明渠发生冻胀破坏的准确位置具有很大的参考价值。  相似文献   

14.
巫山县污水处理厂高填方工程场坪高程为179 m,最大填方高度为75 m。当三峡水库蓄水至175 m高程时,填方体绝大部分位于库水位以下,必须考虑填料湿化变形引起的沉降和不均匀沉降。土体浸水湿化不仅可引起湿化体积变形,而且还会引起剪切变形和土体强度降低,从而影响土工建筑物的安全。对巴东组土料进行颗粒分析和重型击实试验,得到了填料的可压实性、最优含水率和最大干密度指标;选择巴东组二段土料进行不同压实度、不同围压下的三轴湿化变形试验,得到了湿化应力-应变关系和附加湿化应变与应力水平、围压的关系。结果表明:湿化变形随湿化点偏应力增大而增大,附加轴向应变随围压增大而减小,随着应力水平增大而增大;当轴向应变超过某特征值时,其偏差应力与轴向应变由幂函数关系变为双曲线关系,特征值约为1.2%;围压较小时,附加体积应变随着湿化点应力水平增大而增大,当围压较大时,附加体积应变随应力水平增大先增大,然后趋于稳定,最后再减小。巫山县污水处理厂高填方工程采用"碾压+强夯"控制干密度和"湿法填筑"控制施工含水量,高填方的最大总沉降为69.85 mm,小于限定值100 mm,取得了较好的工程效果。  相似文献   

15.
水对岩质边坡倾倒变形影响的DDA模拟   总被引:1,自引:0,他引:1  
大量工程实例表明,水位变动与水库库岸岩质边坡的变形失稳有紧密联系。本文基于非连续介质力学的DDA(Discontinous Deformation Analysis)方法,采用经典的 Goodman 倾倒模型,对边坡进行倾倒变形及失稳过程模拟,分析了岩质边坡倾倒变形的机理、影响因素,变形稳定和整体失稳的控制条件。在此基础上,考虑水的浮托力和渗透力的作用,模拟了水对岩质边坡倾倒变形的触发作用以及水位变动对变形的影响,分析了水对岩质边坡安全系数的影响。模拟结果显示,发生倾倒变形的安全系数远小于整体稳定安全系数;坡脚的稳定性对边坡的整体稳定起控制作用,坡脚的滑移是边坡发生倾倒变形的必要条件;水的作用降低了坡脚的稳定性,一定条件下是边坡进一步发生倾倒变形的触发因素。  相似文献   

16.
针对高寒区长距离供水渠道工程冻胀破坏预警问题,提出了一种新的预警模型构建方法。通过分析渠道冻胀信息提取的主要影响因素之间的相互关系,比对人工监测和仪器自动监测渠道冻胀信息的识别路径,采用统一的量化识别尺度,探索构建预警指标体系和判定阈值,为渠道冻胀信息采集及预警预报系统软件研发创建数据模型。工程实践运用表明,该方法在监测渠道断面冻胀信息时,具有预警信息全数字化、预警过程全自动化、数据路径可追踪、数据来源可追溯、数据结果可反馈等优点,可以有效提高冻胀破坏预警预报的精准度,为高寒区供水渠道风险识别与渠道全寿命期有关安全评价提供有效的手段。  相似文献   

17.
黄涛  张国新  李江 《水利水电技术》2019,50(12):120-129
北方寒冷地区某大型调水渡槽,采用大跨度三向预应力钢筋混凝土结构。在其施工建设期间,检查已建渡槽槽墙表面有竖向长裂缝、流白膏、碱蚀渗水的现象,敲击墙面内部有空鼓声音。为了研究上述问题,采用理论分析、数值计算方法,从预应力张拉、积水冻胀、环境温度等方面考虑,分析表明槽墙表面裂缝和内部空鼓缝是积水冻胀造成的。非线性有限元精细模型计算和钢筋锈蚀耐久性分析结果表明:(1)冻胀量达到0.4%时,管周边出现纵向拉裂缝,当冻胀量达到1%时,表面开始出现竖向裂缝,冻胀量达到3%时,表面形成长裂缝,内部空鼓缝贯通;(2)灌浆孔道有空气和积水恶劣工况下,预应力钢筋发生锈蚀,速率达到0.102 mm/a;空鼓缝深度8 cm且管内破裂进水,其锈蚀速率为0.024 mm/a,15 a后其重量损失率即可达6%;当空鼓缝深小于8 cm时,10 a后竖向普通钢筋的锈蚀将致槽墙生成新的锈胀裂缝。建议对渡槽进行二次灌浆并控制好灌浆质量及做好保温和防水措施,防范渡槽产生新裂缝。  相似文献   

18.
为了保障乌东德大坝的安全运行,有必要研究近坝滑坡体金坪子滑坡的地表变形特性并分析其地下排水效果.为此,基于表面变形观测成果和地质资料,分析了滑坡体表面变形的增量、空间分布和时变特性.结果表明:金坪子滑坡体Ⅱ区变形最大且处于蠕滑变形状态,Ⅰ区次之,其他区变形较小,滑坡体具有牵引式变形特点;Ⅱ区前缘变形大后缘变形小,年同期...  相似文献   

19.
整体式U形渠道混凝土衬砌结构冻胀破坏力学模型   总被引:3,自引:0,他引:3  
通过对整体式小型U形混凝土衬砌渠道冻胀破坏特征及原因分析,将结构简化为在法向冻胀力、法向冻结力、切向冻结力和重力共同作用下的超静定两铰拱,应用结构力学原理求解出衬砌板的冻胀力及内力图,结合混凝土板抗裂条件,给出了最大拉应力、衬砌板厚和抗冻胀破坏验算的公式,并对整体式与两拼式U形衬砌板冻胀效应进行了比对。结果表明,整体式U形混凝土衬砌渠道由于具有冻胀变形均匀、法向冻胀力小、抗冻胀能力强等特点,优于传统的两拼式U形渠道断面。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号