首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Helium(He) is commercially produced from natural gas by low-temperature condensation. The process is energy extensive because of the extremely low He concentration(<0.3%) and the operation at cryogenic temperature. Herein we demonstrated DD3R zeolite membrane was efficient to extract He from natural gas at atmosphere temperature. The membrane performance was evaluated in terms of temperature,pressure and molar fractions. The overall membrane performance was dominated by the diffusivity select...  相似文献   

2.
SSZ-13 membranes with high separation performances were prepared using ball-milled nanosized seeds by once hydrothermal synthesis. Separation performances of SSZ-13 membranes in CO_2/CH_4 and N_2/CH_4 mixtures were enhanced after synthesis modification. Single-gas permeances of CO_2, N_2 and CH_4 and ideal selectivities were recorded through SSZ-13 membranes. The effects of temperature, pressure, feed flow rate and humidity on separation performance of the membranes were discussed. Three membranes prepared after synthesis modifications had an average CO_2 permeance of 1.16 × 10~(-6) mol·(m~2· s·Pa)~(-1)(equal to 3554 GPU) with an average CO_2/CH_4 selectivity of 213 in a 50 vol%/50 vol% CO_2/CH_4 mixture. It suggests that membrane synthesis has a good reproducible. The membrane also displayed a N_2 permeance of 1.07 × 10~(-7) mol·(m~2·s·Pa)~(-1)(equal to 320 GPU) with a N_2/CH_4 selectivity of 13 for a 50 vol%/50 vol% N_2/CH_4 mixture. SSZ-13 membrane displayed stable and good separation performance in the wet CO_2/CH_4 mixture for a long test period over 100 h at 348 K. The current SSZ-13 membranes show great potentials for the simultaneous removals of CO_2 and N_2 in natural gas purification as a facile process suitable for industrial application.  相似文献   

3.
采用微波辅助二次生长法在α-Al2O3载体上合成了SAPO-34分子筛膜,并将其应用于CO2/CH4分离。通过扫描电镜、X射线衍射和傅里叶变换红外光谱等表征方法,系统考察了加热方式、晶种粒径、老化时间和晶化时间对SAPO-34分子筛膜表面形貌和结构的影响。实验结果表明,以0.4 μm分子筛作为晶种,在老化24 h,然后微波加热晶化4 h后可制备出厚度约为1.5 μm的致密、无缺陷SAPO-34分子筛膜,其平均CO2/CH4分离因子和CO2渗透率分别达到81和6.6×10-7 mol·m-2·s-1·Pa-1,制备方法可靠,重复性高。  相似文献   

4.
The special channels and intrinsic defects within GO laminates make it a very potential candidate for gas separation in recent years. Herein, the gas separation performance of GO membranes prepared on the surface of ceramicα-Al_2O_3 hollow fibre was investigated systematically. The microstructures of ceramic hollow fibre supported GO membranes were optimized by adjusting operation conditions. And, the GO membrane fabricated at 30 min exhibited great promising H_2 recovery ability from H_2/CO_2 mixture. At room temperature, the H_2 permeance was over 1.00 × 10~(-7)mol·m~(-2)·s~(-1)·Pa~(-1)for both single gas and binary mixture. The corresponding ideal selectivity and mixture separation factor reached around 15 and 10, respectively. In addition, humility, operation temperature, H_2 concentration in the feed and the reproducibility were also studied in this work.  相似文献   

5.
Membrane separation is a high-efficiency, energy-saving, and environment-friendly separation technology. Covalent organic framework (COF)-based mixed-matrix membranes (MMMs) have broad application prospects in gas separation and are expected to provide new solutions for coal-bed methane purification. Herein, a high-throughput screening method is used to calculate and evaluate COF-based MMMs for CH4/N2 separation. General design rules are proposed from thermodynamic and kinetic points of view using the computation-ready, experimental COFs. From our database containing 471,671 generated COFs, 5 COF membrane materials were screened with excellent membrane selectivities, which were then used as the filler of MMMs for separation performance evaluation. Among them, BAR-NAP-Benzene_CF3 combined with polydimethylsiloxane and styrene-b-butadiene-b-styrene show high CH4 permeability of 4.43×10-13 mol·m·s-1·Pa-1·m-2 and high CH4/N2 selectivity of 9.54, respectively. The obtained results may provide reasonable information for the design of COF-based membranes for the efficient separation of CH4/N2.  相似文献   

6.
A microporous zirconia membrane with hydrogen permeance about 5 × 10?8 mol·m?2·s?1·Pa?1, H2/CO2 permselectivity of ca. 14, and excellent hydrothermal stability under steam pressure of 100 kPa was fabricated via polymeric sol–gel process. The effect of calcination temperature on single gas permeance of sol–gel derived zirconia membranes was investigated. Zirconia membranes calcined at 350 °C and 400 °C showed similar single gas permeance, with permselectivities of hydrogen towards other gases, such as oxygen, nitrogen, methane, and sulfur hexafluoride, around Knudsen values. A much lower CO2 permeance (3.7 × 10?9 mol·m?2·s?1·Pa?1) was observed due to the interaction between CO2 molecules and pore wall of membrane. Higher calcination tem-perature, 500 °C, led to the formation of mesoporous structure and, hence, the membrane lost its molecular siev-ing property towards hydrogen and carbon dioxide. The stability of zirconia membrane in the presence of hot steam was also investigated. Exposed to 100 kPa steam for 400 h, the membrane performance kept unchanged in comparison with freshly prepared one, with hydrogen and carbon dioxide permeances of 4.7 × 10?8 and~3 × 10?9 mol·m?2·s?1·Pa?1, respectively. Both H2 and CO2 permeances of the zirconia membrane de-creased with exposure time to 100 kPa steam. With a total exposure time of 1250 h, the membrane presented hydrogen permeance of 2.4 × 10?8 mol·m?2·s?1·Pa?1 and H2/CO2 permselectivity of 28, indicating that the membrane retains its microporous structure.  相似文献   

7.
Silicoaluminophosphate (SAPO) membranes with Si/Al gel ratios from 0.05 to 0.3 were synthesized by in situ crystallization onto porous, tubular stainless steel support. Pure SAPO-34 membranes were obtained when the Si/Al ratio was 0.15 or higher. The adsorbate polarizability correlated with the adsorption capacity on SAPO-34, and the amounts of gases adsorbed were in the order: CO2 > CH4 > N2 > H2. The Si/Al ratio did not affect the pore volume significantly, but it changed the CO2 and CH4 adsorption equilibrium constants. The SAPO-34 membranes effectively separated CO2 from CH4 for feed pressures up to 7 MPa. At 295 K, for a pressure drop of 138 kPa and a 50/50 feed, the CO2/CH4 selectivity was 170 for a membrane with a Si/Al gel ratio of 0.15. At 7 MPa, the CO2/CH4 selectivity was 100 and the CO2 permeance was 4 × 10−8 mol/(m2 · s · Pa) at 295 K. This membrane was also separated CO2/N2 (selectivity = 21) and H2/CH4 (selectivity = 32) mixtures at 295 K and a pressure drop of 138 kPa. Competitive adsorption and difference in diffusivities are responsible for CO2/CH4 and CO2/N2 separations, whereas the H2/CH4 separation was due to diffusivity differences. For a membrane with Si/Al gel ratio of 0.1, a mixture of SAPO-34 and SAPO-5 formed, and the CO2/CH4 selectivity was lower.  相似文献   

8.
In this study, poly(vinilydene fluoride-co-hexafluoropropylene)(PVDF-HFP) was used for preparation of hydrophobic membranes using non-solvent induced phase inversion(NIPS) technique. PVDF-HFP copolymer with concentrations of 10 wt% and 12 wt% was prepared to investigate the effect of polymer concentration on pore structure,morphology, hydrophobicity and performance of prepared membranes. Besides, the use of two coagulation baths with the effects of parameters such as coagulant time, polymer type and concentration, and the amount of nonsolvent were studied. The performance of prepared membranes was evaluated based on the permeability and selectivity of oxygen and nitrogen from a gas mixture of nitrogen/oxygen under operating conditions of feed flow rate(1–5 L·min~(-1)), inlet pressure to membrane module(0.1–0.5 MPa) and temperatures between 25 and 45 °C. The results showed that the use of two coagulation baths with different compositions of distillated water and isopropanol,coagulant time, polymer type and concentration, and the amount of non-solvent additive have the most effect on pore structure, morphology, thickness, roughness and crystallinity of fabricated membranes. Porosity ranges for the three fabricated membranes were determined, where the maximum porosity was 73.889% and the minimum value was 56.837%. Also, the maximum and minimum average thicknesses of membrane were 320.85 μm and115 μm. Besides, the values of 4.7504 × 10~(-7) mol· m~(-2)· s~(-1)· Pa~(-1), 0.525 and 902.126 nm were achieved for maximum oxygen permeance, O_2/N_2 selectivity and roughness, respectively.  相似文献   

9.
二乙胺导向合成中空纤维负载型SAPO-34分子筛膜   总被引:1,自引:0,他引:1       下载免费PDF全文
采用价格低廉的二乙胺为模板剂,通过球磨晶种诱导二次生长法制备中空纤维负载型SAPO-34分子筛膜用于CO2/CH4气体分离。系统考察了诱导晶种大小、膜合成液中二乙胺含量、铝源含量与晶化时间对膜结构形貌以及分离性能的影响。结果表明:相比于原始晶种,球磨晶种诱导制备SAPO-34分子筛膜层更加致密。随着膜合成液中二乙胺含量增加,膜表面分子筛晶体逐渐由SAPO-11向SAPO-34转变,当二乙胺含量过高时,载体表面未形成SAPO-34膜。当合成液中铝源含量较低时,分子筛膜晶化不够完全,当铝源含量过高时,膜表面晶体粒径逐渐减小甚至难以成核,膜层厚度减薄,不易生成连续的膜层。随着晶化时间的增加,膜层厚度逐渐增加,膜表面趋于致密。当膜合成液摩尔组成为1.0Al2O3∶0.9P2O5∶0.6SiO2∶2.0DEA∶100H2O,晶化时间为36 h时,球磨晶种诱导制得的SAPO-34分子筛膜分离性能最佳,膜的CO2渗透性为1.11×10?6 mol·m?2·s?1·Pa?1,CO2/CH4分离选择性达80。  相似文献   

10.
采用壳层具有介孔结构的聚吡咯中空纳米微球作为填料,和聚氧化乙烯单体共混自由基聚合制备了混合基质膜。结果表明,聚吡咯微球与基质相容性较好,未见明显团聚现象和缺陷。混合基质膜的渗透系数随填料含量的增加先增大后减少,在0.5%处达到最大值,CO2渗透系数增长31%;CO2/N2分离系数有所降低,CO2/CH4分离系数则变化不大。研究表明,由于聚合物链段对微球壳层的介孔填充,气体在膜内的扩散系数不升反降,渗透系数的提高主要是由于溶解度系数的变化,而这也导致了溶解选择性的变化,进而影响了分离系数。  相似文献   

11.
In this study, the effects of 1-Ethyl-3-methylimidazolium tetrafluoroborate ionic liquid on CO2/CH4 separation performance of symmetric polysulfone membranes are investigated. Pure polysulfone membrane and ionic liquid-containing membranes are characterized. Field emission scanning electron microscopy (FE-SEM) is used to analyze surface morphology and thickness of the fabricated membranes. Energy dispersive spectroscopy (EDS) and elemental mapping, Fourier transform infrared (FTIR), thermal gravimetric (TGA), X-ray diffraction (XRD) and Tensile strength analyses are also conducted to characterize the prepared membranes. CO2/CH4 separation performance of the membranes are measured twice at 0.3 MPa and room temperature (25 °C). Permeability measurements confirm that increasing ionic liquid content in polymer-ionic liquid membranes leads to a growth in CO2 permeation and CO2/CH4 selectivity due to high affinity of the ionic liquid to carbon dioxide. CO2 permeation significantly increases from 4.3 Barrer (1 Barrer=10-10 cm3(STP)·cm·cm-2·s-1·cmHg-1, 1cmHg=1.333kPa) for the pure polymer membrane to 601.9 Barrer for the 30 wt% ionic liquid membrane. Also, selectivity of this membrane is improved from 8.2 to 25.8. mixed gas tests are implemented to investigate gases interaction. The results showed, the disruptive effect of CH4 molecules for CO2 permeation lead to selectivity decrement compare to pure gas test. The fabricated membranes with high ionic liquid content in this study are promising materials for industrial CO2/CH4 separation membranes.  相似文献   

12.
陈加伟  陈慧如  漆虹  徐南平 《化工学报》2013,64(11):4060-4067
以五正丁氧基铌为前驱体,通过溶胶-凝胶法制备出稳定的Nb2O5聚合溶胶,详细考察了溶胶制备过程参数(体系酸度、水解比、反应温度、反应时间和螯合剂用量)对溶胶尺寸、稳定性以及制备重复性的影响。采用平均粒径为4.8 nm的Nb2O5溶胶,通过浸浆法在平均孔径为3 nm的γ-Al2O3中孔膜上制备出Nb2O5微孔膜。利用TG、XRD、NH3吸附-脱附、CO2吸附、吡啶吸附傅里叶变换红外光谱(Py-IR)和单组分气体渗透实验等手段对Nb2O5粉体及微孔膜的性能进行了表征,结果表明:在200℃、0.3 MPa条件下,350℃烧成的微孔Nb2O5膜对H2的渗透率和H2/CO2的理想分离因子分别为3.1×10-9 mol·m-2·s-1·Pa-1和21。此外,微孔Nb2O5膜经150 kPa的水蒸气处理8 h后,膜的渗透性能以及H2/CO2理想选择性基本保持不变。  相似文献   

13.
Tensile strain of porous membrane materials can broaden their capacity in gas separation. In this work, using van der Waals corrected density functional theory(DFT) and molecular dynamics(MD) simulations, the performance and mechanism of CO_2/CH_4 separation through strain-oriented graphdiyne(GDY) monolayer were studied by applying lateral strain. It is demonstrated that the CO_2 permeance peaks at 1.29 × 10~6 gas permeation units(GPU) accompanied with CO_2/CH_4 selectivity of 5.27 × 10~3 under ultimate strain, both of which are far beyond the Robeson's limit. Furthermore, the GDY membrane exhibited a decreasing gas diffusion energy barrier and increasing permeance with the increase of applied tensile strain. CO_2 molecule tends to reoriented itself vertically to permeate the membrane. Finally, the CO_2 permeability decreases with the increase of the temperature from300 K to 500 K due to conserving of rotational freedom, suggesting an abnormal permeance of CO_2 in relation to temperature. Our theoretical results suggest that the stretchable GDY monolayer holds great promise to be an excellent candidate for CO_2/CH_4 separation, owing to its extremely high selectivity and permeability of CO_2.  相似文献   

14.
Samples of methane molecules grade diameter channel CHA-type molecular sieves(Chabazite-K, SAPO-34 and SSZ-13) were investigated using the adsorption separation of CH_4/N_2 mixtures. The isotherms recorded for CH_4 and N_2 follow a typical type-Ι behavior, which were fitted well with the Sips model(R~20.999) and the selectivity was calculated using IAST theory. The results reveal that Chabazite-K has the highest selectivity(SCH_4/N= 5.5).2 SSZ-13 has the largest capacity, which can adsorb up to a maximum of 30.957 cm~3·g~(-1)(STP) of CH_4, due to it having the largest pore volume and surface area, but the lowest selectivity(S_(CH_4/N_2)= 2.5). From the breakthrough test, we can conclude that SSZ-13 may be a suitable candidate for the recovery of CH_4 from low concentration methane(CH_420%) based on its larger pore volume and higher CH_4 capacity. Chabazite-K is more suited to the separation of high concentration methane(CH_450%) due to its higher selectivity.  相似文献   

15.
采用两次变温热浸渍法在大孔α-Al2O3多孔管状载体外表面涂覆B-ZSM-5大小晶种,以制备平整、连续且致密的B-ZSM-5晶种层,随后在晶化成膜液的稀溶液体系下,利用二次生长法在α-Al2O3管外表层成功制备B-ZSM-5沸石分子筛膜.实验采用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对B-ZSM-5沸石分子筛...  相似文献   

16.
作为一种高效的分离方法,膜法分离非常规天然气具有较理想的应用前景。相较CH4优先渗透膜,N2优先渗透膜优势在于分离N2/CH4混合气后CH4处于高压侧,利于后续处理。以均苯三甲酰氯为油相单体,间苯二胺为水相单体,采用界面聚合法在聚砜基膜上制备致密超薄聚酰胺分离层,并通过向其中引入孔径可允许N2分子通过而不允许CH4分子通过的纳米颗粒ZIF-90,在膜内形成固定的N2传递通道,成功制备了用于脱氮提纯CH4的N2优先渗透混合基质膜。膜渗透选择性能测试结果显示当混合基质膜中纳米颗粒掺杂量为0.30 g·L-1时,2 bar(1 bar=0.1 MPa)进料压力下,N2渗透速率达1.16×10-9 mol·m-2·s-1·Pa-1,N2/CH4分离因子达16.6,分离因子比未掺杂ZIF-90的聚酰胺膜提高46.5%,具有一定的处理非常规天然气脱氮提纯甲烷的应用潜力。  相似文献   

17.
作为一种高效的分离方法,膜法分离非常规天然气具有较理想的应用前景。相较CH4优先渗透膜,N2优先渗透膜优势在于分离N2/CH4混合气后CH4处于高压侧,利于后续处理。以均苯三甲酰氯为油相单体,间苯二胺为水相单体,采用界面聚合法在聚砜基膜上制备致密超薄聚酰胺分离层,并通过向其中引入孔径可允许N2分子通过而不允许CH4分子通过的纳米颗粒ZIF-90,在膜内形成固定的N2传递通道,成功制备了用于脱氮提纯CH4的N2优先渗透混合基质膜。膜渗透选择性能测试结果显示当混合基质膜中纳米颗粒掺杂量为0.30 g·L-1时,2 bar(1 bar=0.1 MPa)进料压力下,N2渗透速率达1.16×10-9 mol·m-2·s-1·Pa-1,N2/CH4分离因子达16.6,分离因子比未掺杂ZIF-90的聚酰胺膜提高46.5%,具有一定的处理非常规天然气脱氮提纯甲烷的应用潜力。  相似文献   

18.
Nitrogen-rich porous organic polymers have shown great potentials in gas adsorption/separation, photocatalysis, electrochemistry, sensing and so on. Herein, 1,2,3-triazole functionalized triazine-based porous organic polymers (TT-POPs) have been synthesized by the copper-catalyzed azide-alkyne cycloaddition (Cu-AAC) polymerization reactions of 1,3,5-tris(4-azidophenyl)-triazine with 1,4-diacetylene benzene and 1,3,5-triacetylenebenzene, respectively. The characterizations of N2 adsorption at 77 K show TT-POPs possess permanent porosity with BET surface areas of 666 m2·g-1 (TT-POP-1) and 406 m2·g-1 (TT-POP-2). The adsorption capacities of TT-POPs for CO2, CH4, C2H2 and C2H4, as well as the selective separation abilities of CO2/N2, CO2/CH4, C2H2/CH4 and C2H4/CH4 were evaluated. The gas selective separation ratio of TT-POPs was calculated by the ideal adsorbed solution theory (IAST) method, wherein the selective separation ratios of C2H2/CH4 and C2H4/CH4 of TT-POP-2 was 48.4 and 13.6 (298 K, 0.1 MPa), which is comparable to other adsorbents (5.6-120.6 for C2H2/CH4, 10-26 for C2H4/CH4). This work shows that the 1,2,3-triazole functionalized triazine-based porous organic polymer has a good application prospect in natural gas purification.  相似文献   

19.
Hydrogen fuel has been embraced as a potential long-term solution to the growing demand for clean energy. A membrane-assisted separation is promising in producing high-purity H2. Molecular sieving membranes (MSMs) are endowed with high gas selectivity and permeability because their well-defined micropores can facilitate molecular exclusion, diffusion, and adsorption. In this work, MXene nanosheets intercalated with Ni2+ were assembled to form an MSM supported on Al2O3 hollow fiber via a vacuum-assisted filtration and drying process. The prepared membranes showed excellent H2/CO2 mixture separation performance at room temperature. Separation factor reached 615 with a hydrogen permeance of 8.35 × 108 mol·m2·s1·Pa1. Compared with the original Ti3C2Tx/Al2O3 hollow fiber membranes, the permeation of hydrogen through the Ni2+-Ti3C2Tx/Al2O3 membrane was considerably increased, stemming from the strong interaction between the negatively charged MXene nanosheets and Ni2+. The interlayer spacing of MSMs was tuned by Ni2+. During 200-hour testing, the resultant membrane maintained an excellent gas separation without any substantial performance decline. Our results indicate that the Ni2+ tailored Ti3C2Tx/Al2O3 hollow fiber membranes can inspire promising industrial applications.  相似文献   

20.
The novel synergistic mixture of TBP and Cyanex-272 is used as the extractant in the hollow fiber renewal liquid membrane(HFRLM) technique for Zr/Hf separation.The effects of the chemical and operational parameters such as HNO_3 concentration in the donor phase,NH4 F concentration in the acceptor phase,Cyanex-272 and TBP concentration in the liquid membrane phase,the lumen and shell side flow rates,and aqueous/organic volume ratio on the mass transfer and separation performance of HFRLM method were investigated.The obtained results reveal the intensification potential of proposed HFRLM technique for selective extraction of Zr over Hf with separation factor higher than 100.The HFRLM method provides two times higher mass transfer flux in comparison with hollow fiber supported liquid membrane(HFSLM).Also,the HFRLM method shows satisfactory stability for 700 min of continuous operation.The Zr ion transport through the LM phase follows the coupled co-transport mechanism and the diffusion in the renewal layer is recognized as the rate-controlling step in the HFRLM process.Moreover,the Zr mass transfer coefficient and molar flux in the HFRLM method are calculated in the range of 1×10~(-8)to 8.4×10~(-7) m·s~(-1) and 4.9×10~(-6) to 20.1×10~(-6) mol·m~(-2)·s~(-1),respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号