首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于中国散裂中子源(CSNS)建设的我国第一台高性能白光中子源——反角白光中子源(Back-n)是国际上综合性能最好的白光中子源之一,能区范围覆盖meV~百MeV,飞行时间测量分辨率可在全能区达到1%以内,中子注量率国际领先。自2018年3月建成以来,Back-n已开展了一系列的核数据测量实验、探测器标定实验、中子辐射效应实验和中子照相研究,科研产出效率非常高,实验数据质量达到了研究要求,为我国多领域的科学研究和应用研究提供了一个强大的平台。本文对该白光中子源的性能特点、已投入运行和规划中的核数据测量实验谱仪进行了综述,并指出了主要应用方向。  相似文献   

2.
中国散裂中子源(CSNS)反角白光中子(Back-n)束斑品质是核数据测量和其他物理实验的基础。利用像增器脉冲选通特性和飞行时间法搭建了一套具有时间分辨能力的成像系统,其空间分辨小于1 mm,初步实现了束斑轮廓、尺寸和非均匀性等特性参数的测量和定量分析。在距散裂靶约55、75 m处测得束斑FWHM分别为55、63 mm,对应峰值强度约75%处束斑直径分别为50、60 mm,且束斑边缘陡峭,呈台阶状。分析表明,束斑轮廓、尺寸和非均匀性等特性参数均与中子能量无关,在束斑中心区域80%范围内非均匀性小于10%。测量结果表明,CSNS反角白光中子源物理终端具有较好的中子束斑品质,可开展较高精度的核数据测量。  相似文献   

3.
先进裂变核能的关键核数据测量和CSNS白光中子源   总被引:1,自引:1,他引:0  
在设计加速器驱动的次临界系统(ADS)、核废料嬗变装置及钍基熔盐堆时亟需一些关键核数据,当前核数据库受实验条件或中子能区的限制,存在核数据精度不高甚至少部分核素数据缺失的情况。本文综述了国内外相关的核数据研究和相应的白光中子源情况。基于中国散裂中子源(CSNS)的反角通道白光中子源实验终端的中子束流具有非常宽的能谱(0.01 eV~200 MeV)和很好的时间特性。模拟得到距靶80 m处的实验终端的中子注量率为9.3×106cm-2•s-1,1 eV ~ 1 MeV能量间隔内的中子数占总中子数的53%;同时,加速器运行在双束团模式或单束团模式,时间分辨率均在0.3%~0.9%之间,适合开展核数据测量。  相似文献   

4.
中国散裂中子源(CSNS)反角白光中子(Back-n)束斑品质是核数据测量和其他物理实验的基础。利用像增器脉冲选通特性和飞行时间法搭建了一套具有时间分辨能力的成像系统,其空间分辨小于1 mm,初步实现了束斑轮廓、尺寸和非均匀性等特性参数的测量和定量分析。在距散裂靶约55、75 m处测得束斑FWHM分别为55、63 mm,对应峰值强度约75%处束斑直径分别为50、60 mm,且束斑边缘陡峭,呈台阶状。分析表明,束斑轮廓、尺寸和非均匀性等特性参数均与中子能量无关,在束斑中心区域80%范围内非均匀性小于10%。测量结果表明,CSNS反角白光中子源物理终端具有较好的中子束斑品质,可开展较高精度的核数据测量。  相似文献   

5.
散裂中子源可产生白光中子,具有中子注量率高、热功率小、可脉冲化等优点,其应用十分广泛。其中一个重要的应用是核数据测量。目前,中国缺少白光中子源,因此一直没有开展基于白光中子源的核数据测量工作。目前在建的中国散裂中子源(China Spallation Neutron Source,CSNS)的反角中子束线,在距散裂靶80 m处的中子强度约为9.25×106n·cm-2·s-1,时间分辨率为0.3%-0.9%,能够较好地用于核数据测量工作。本文介绍了该白光中子束线及实验终端的概况,并重点介绍该实验终端本底计算结果、中子准直系统和束斑参数。通过计算结果得出,CSNS反角白光中子源物理终端具有较低的实验本底和较好的中子束斑,可以开展较高精度的核数据测量工作。  相似文献   

6.
正中子核数据是先进核能系统研发、核天体物理、基础物理研究及国防科技发展中用到的关键数据。国际上自20世纪80年代以来,基于中高能强流脉冲质子加速器的散裂中子源已成为开展各种高水平中子核数据测量的重要手段。中国散裂中子源(CSNS)反角白光中子束线(图1)是我国首条基于散裂中子源的白光中子束线,将为我国开展高水平的中子核数据测量提供很好的条件,该束线已于2017年8月建成并投入使用,在11  相似文献   

7.
即将建成的中国散裂中子源(China Spallation Neutron Source,CSNS)反角白光中子束线可为核数据测量提供高注量率的脉冲白光中子束流,填补我国核数据测量用白光中子源的空白,提高我国核数据测量水平,满足核能、核技术及基础核物理研究对核数据的需求。该束线建成后,其中子能谱及注量率的精确测量将是开展其它物理实验的基础,快裂变电离室因其独特优点被选为中子能谱和注量率测量探测器。通过实验研究了快裂变电离室的粒子分辨性能、时间分辨性能;确定阴、阳极的合理间距为10 mm,据此测得电离室的时间分辨约15 ns;利用235U样品量计算的探测效率与利用伴随粒子法给出的探测效率在不确定度范围内符合,因此可以标定快裂变室的探测效率。通过这些工作,完成了满足反角白光中子束能谱及注量率测量需求的快裂变室的物理设计。  相似文献   

8.
核材料中热中子吸收截面高的杂质会引起堆芯反应性的变化,一般用硼当量表示这些杂质对热中子的吸收,硼当量是衡量核材料纯度的重要指标之一。热中子宏观吸收截面法是硼当量测量的方法之一,测量时采用同位素中子源则精度低,而白光中子源产生的中子强度高、方向性好,且可慢化为热谱,能有效提高硼当量测量精度。本文基于15 MeV电子加速器驱动的白光中子源开展核石墨硼当量测量的研究,利用蒙特卡罗模拟并优化实验方案,对实验数据进行检验与修正,建立核石墨硼当量测量定量分析方法。该方法能快速、准确检测核材料的硼当量,对反应堆的物理设计、安全性评估等具有重要意义。  相似文献   

9.
核反应堆的安全运行、新一代反应堆设计以及核废料处理等需要精确的中子核数据。光中子源联用飞行时间谱(Time of Flight,TOF)测量是最精确的中子能量测量技术,在热中子和共振中子能区的截面测量中发挥了非常重要的作用。钍基熔盐堆(Thorium Molten Salt Reactor,TMSR)项目中15 MeV电子加速器驱动的光中子源装置(TMSR Photo-Neutron Source Phase 1,TPNS1)是专为钍-铀循环核数据测量设计和建造的,它位于中国科学院上海应用物理研究所嘉定园区内。第一阶段采用15 MeV电子直线加速器(LINAC)驱动,第二阶段拟建造电子能量约100 MeV(TPNS2)驱动的光中子源。前者建成后可提供飞行路径5 m、通量约104 n·s-1·cm-2的连续能量中子束(白光中子)及约1 MeV低能伽马射线,它们分别用于测量中子反应截面和伽马辐照研究,这是国内首台用于核数据测量的白光中子源。  相似文献   

10.
白光中子源及飞行时间谱仪的能量分辨率函数描述了谱仪装置测量中子能量的分辨率与所测中子的能量之间的函数关系。能量分辨率函数用于中子共振截面测量实验数据分析,对确定共振峰参数至关重要。本工作利用Geant4蒙特卡罗工具包构建了TMSR白光中子源的中子产生靶系统模型,模拟了中子在靶系统内由产生到溢出靶系统的整个物理过程,获得了不同能群中子从产生到溢出的时间分布。基于RPI能量分辨率函数形式,对时间分布进行拟合分析,获得了一套合适的参数,用于确定TMSR白光中子源飞行时间谱仪的中子能量分辨率函数。  相似文献   

11.
中子辐射俘获截面及共振参数在核工程设计、核天体物理等研究领域中有重要的应用价值。在中国散裂中子源(CSNS)反角白光中子束线(Back n)上,使用C6D6测量系统开展了169Tm辐射俘获反应测量。通过脉冲高度权重技术、共振吸收法和饱和归一法得到169Tm辐射俘获反应的产额。利用SAMMY程序拟合169Tm的产额数据,得到169Tm在1~100 eV能量区间的共振能量、中子宽度、辐射俘获宽度等共振参数。使用实验测得的共振参数和Reich Moore近似计算了169Tm在1~100 eV能量区间的辐射俘获截面。实验测量结果与ENDF/B Ⅷ.0数据库的推荐值总体符合较好,部分共振参数和截面存在一定的差异。产生这些差异的原因与Back n的源中子能谱结构、能量分辨率、实验本底的精度有关。  相似文献   

12.
为获得核数据测量所需的束斑形状及较低的实验本底,反角白光中子源需通过准直器对束流进行刮束准直。以中子开关为例,根据相关要求确定了整体的设计方案。通过将挡块一分为二的设计,解决了小直径深孔加工的难题。利用有限元分析软件,优化了真空盒的外形结构及密封方式。针对挡块的工作环境,搭建了可用于真空的高精度耐辐射移动平台。经测试,中子开关的主要技术指标均满足要求,说明设计合理。  相似文献   

13.
为测量中国散裂中子源(China Spallation Neutron Source, CSNS)反角白光中子源150 keV以下能区飞行时间法中子能谱,研制基于10B(n, α)7Li和6Li(n, t)α核反应的双屏栅电离室,采用薄窗和薄底衬的结构设计。通过Garfield++、SRIM和Simcenter Magnet Electric程序对屏栅电离室的工作气体、极间距和电场分布等工作参数进行模拟设计,并采用α源及CF4、P10、90%Ar-10%CO2三种气体对电离室进行性能参数测试。结果表明,选定电子漂移速度快、扩散系数小,以及阻止本领大的CF4作为CSNS/Back-n束上测试工作气体,阴极-栅极和栅极-阳极间距分别为20 mm和5 mm。屏栅电离室收集区74 mm范围内是电场均匀区,场强的相对偏差≤0.03%;性能测试结果表明,工作气体为CF4时,电离室对239Pu/241Am/244Cm混合α面源具有很好的能量分辨,最佳能量分辨率为2.4%@5.48 MeV。对比平板型电离室和硅微条探测器的测量结果,验证了本工作研制的屏栅型电离室的能量分辨优势。  相似文献   

14.
本文基于中国散裂中子源(CSNS)反角白光中子束线(Back-n)的C6D6测量系统,以重要核素209Bi为研究对象,利用蒙特卡罗方法研究了样品厚度对权重函数求取精度的影响,并发展了求解C6D6探测器的点态权重函数技术。研究结果表明,目前Back-n上的C6D6测量系统权重函数的系统不确定度会随实验样品厚度的增加而迅速增加,而本工作得到的点态权重函数的系统不确定度在样品厚度增大到6 mm时仍小于0.5%,有利于提高厚样品实验数据的精度。本工作为将来在Back-n上开展如209Bi等高原子序数、小截面核素的中子辐射俘获截面的实验测量奠定了技术基础。  相似文献   

15.
<正>中子辐射俘获反应截面是一类重要的核数据。在共振区,中子核反应截面随中子能量变化剧烈,需要通过实验测量才能确定各种核反应截面。在中国散裂中子源反角白光中子束线上建立了一套C_6D_6探测器系统,用于开展共振区的中子辐射俘获反应截面测量。开展了~(197)Au、~(169)Tm和  相似文献   

16.
微秒脉冲中子源相对于纳秒脉冲中子源有相对高的脉冲中子产额,微秒脉冲中子源在核物理实验研究中有着较为广泛的应用,因此其脉冲参数的准确测量对于其有效应用有着重要意义.论文采用双液闪法测量了微秒脉冲中子参数,液闪探测器使用了直径5.08 cm的等高圆柱形的BC -501A探测器,测量得到了脉冲底宽分别为40、50和200μs的微秒脉冲的脉冲宽度、脉冲周期、脉冲中子产额等实验数据,该实验技术可供相关实验人员参考.  相似文献   

17.
电子轰击金属靶产生的中子源,可用于核素反应截面测量实验。为利用7.5 kW、15 MeV电子加速器作为驱动加速器,产生适用于核数据测量实验的中子源,相应开展了该功率下的中子靶站设计。研究中,依据蒙特卡罗程序MCNPX模拟计算的中子源数据,分析优化靶站结构;计算得到靶体能量沉积,导入商用CFD软件CFX中作为热源,模拟分析靶体对流传热性质,优化冷却通道模型,安全实现中子靶站冷却。本研究模拟设计的靶站,能产生强度为1012s-1量级的中子源。  相似文献   

18.
脉冲高度权重技术是利用C_6D_6探测器测量中子俘获截面的一种数据处理方法。在中国散裂中子源(China Spallation Neutron Source,CSNS)的反角白光中子源(Back-n)靶站上,通过测量金靶(~(197)Au)的中子俘获截面,验证了该方法的可靠性。首先利用Geant4蒙特卡罗程序模拟给出了不同靶条件下的探测器效率,脉冲高度权重函数等基本项,使得加权后的探测器效率与γ能量成正比。然后通过实验测量了~(197)Au中子俘获截面。结果表明:测量获得的中子俘获截面数据和ENDF/B-VⅢ.0评价数据相符合,同时发现随着实验靶尺寸的不同和质子束功率的增加,会使得实验本底的扣除误差越来越大。  相似文献   

19.
中国散裂中子源(CSNS)反角白光中子束线(Back-n)对中子核数据测量和核技术应用等多个领域均有重要意义。为监测其中子束斑轮廓、束流密度及束流能量,研制了由镀硼微网格气体(Micromegas)探测器构成的束流剖面监测装置,并通过测量中子的飞行时间(TOF)来获得能量信息。采用基于开关电容阵列(SCA)专用集成电路(ASIC)的波形采样电子学系统,实现了128路Micromegas探测器阳极条信号的低噪声放大、成形和波形数字化,在现场可编程逻辑门阵列(FPGA)芯片中实现了对信号过阈时间的实时测量,其量程为650 ns~10 ms,电子学时间分辨好于10 ns。在CSNS Back-n上开展实验,成功获得了中子束流剖面及10.65μs~10 ms范围的飞行时间谱,对应的中子能量范围约为0.16 eV~0.14 MeV。利用钽、钴等吸收体进行了中子共振吸收峰的检验,验证了读出电子学系统的功能及飞行时间测量的正确性。  相似文献   

20.
中国散裂中子源(CSNS)反角白光中子束线(Back-n)对中子核数据测量和核技术应用等多个领域均有重要意义。为监测其中子束斑轮廓、束流密度及束流能量,研制了由镀硼微网格气体(Micromegas)探测器构成的束流剖面监测装置,并通过测量中子的飞行时间(TOF)来获得能量信息。采用基于开关电容阵列(SCA)专用集成电路(ASIC)的波形采样电子学系统,实现了128路Micromegas探测器阳极条信号的低噪声放大、成形和波形数字化,在现场可编程逻辑门阵列(FPGA)芯片中实现了对信号过阈时间的实时测量,其量程为650 ns~10 ms,电子学时间分辨好于10 ns。在CSNS Back-n上开展实验,成功获得了中子束流剖面及10.65 μs~10 ms范围的飞行时间谱,对应的中子能量范围约为0.16 eV~0.14 MeV。利用钽、钴等吸收体进行了中子共振吸收峰的检验,验证了读出电子学系统的功能及飞行时间测量的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号