首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The storage capacity of hydrogen in tetrahydrofuran hydrate was investigated by means of pressure-volume-temperature (p-V-T) measurement and Raman spectroscopic analysis. We carried out two measurement strategies using Raman spectroscopic analysis. One was isothermal pressure-swing absorption using tetrahydrofuran hydrate at 277.15 K, and the other was the preparation of a single crystal of hydrogen+tetrahydrofuran mixed gas hydrate from compressed hydrogen and tetrahydrofuran aqueous solutions along the stability boundary. The storage amount of hydrogen at 277.15 K obtained from the p-V-T measurement is about 1.6 mol (hydrogen)/mol (tetrahydrofuran) (about 0.8 mass%) at 70 MPa, and isothermal Raman spectroscopic measurement reveals that it reaches the maximum value of 2.0 mol (hydrogen)/mol (tetrahydrofuran) at about 85 MPa. These results agree well with those for a single crystal of hydrogen+tetrahydrofuran hydrate.  相似文献   

2.
Dual function inhibitors for methane hydrate   总被引:2,自引:0,他引:2  
The performance of five imidazolium-based ionic liquids as a new class of gas hydrate inhibitors has been investigated. Their effects on the equilibrium hydrate dissociation curve in a pressure range of 30-110 bar and the induction time of hydrate formation at 114 bar and a high degree of supercooling, i.e., about 25 °C, are measured in a high-pressure micro differential scanning calorimeter. It is found that these ionic liquids, due to their strong electrostatic charges and hydrogen bond with water, could shift the equilibrium hydrate dissociation/stability curve to a lower temperature and, at the same time, retard the hydrate formation by slowing down the hydrate nucleation rate, thus are able to act as both thermodynamic and kinetic inhibitors. This dual function is expected to make this type of inhibitors perform more effectively than the existing inhibitors.  相似文献   

3.
The structure-H hydrate of 1,1-dimethylcyclohexane (DMCH) helped by methane has been investigated in a temperature range of 274.6-289.3 K and pressure range up to 6.7 MPa. The present results suggest that 1,1-DMCH is a suitable additive which makes a mild-pressure handling of natural-gas hydrate possible.  相似文献   

4.
Four mixtures of 1,1-, cis-1,2-, trans-1,2-, and cis-1,4-dimethylcyclohexanes (hereafter abbreviated DMCH) including H2O and Xe have been investigated in a temperature range over 274.5 K and a pressure range up to 2.7 MPa. The 1,1-DMCH and cis-1,2-DMCH generate the structure-H hydrate in the temperature range up to 295.2 and 280.2 K, respectively. Especially, very large depression of equilibrium pressure has been observed in the structure-H 1,1-DMCH hydrate system. On the other hand, neither trans-1,2-DMCH nor cis-1,4-DMCH generates the structure-H hydrate in the present temperature range. It is an important finding that the cis-1,4-DMCH does not generate the structure-H hydrate in the presence of Xe, while the mixture of cis-1,4-DMCH and methane generates the structure-H hydrate.  相似文献   

5.
Chen Jiayan 《Desalination》1995,100(1-3):13-14
Congratulations toDesalination for its prosperity and for the contributions it has made to benefit mankind. Review the past and look forward to the future for the development of desalination technologies in China.  相似文献   

6.
The decomposition temperature and pressure (quadruple point) of chlorodifluoromethane (R22) gas hydrate in aqueous sodium chloride (NaCl) solution was measured at different NaCl concentrations in the solution as a phase diagram. The operative concentration curve of NaCl was obtained as a function of temperature. The maximum decomposition temperature of R22 hydrate was about 290 K at 0.9 MPa pressure, and it decreased as the NaCl concentration increased in the solution. R22 hydrate caused supercooling, and the supercooling occurrence temperature was much lower than the decomposition temperature. The ultrasonic charge reduced the supercooling of hydration effectively even though the ultrasonic charge did not change the decomposition temperature at all. The concentration experimental results from the several NaCl solutions having different NaCl concentrations were in good agreement with the theoretical operative concentration curve for NaCl.  相似文献   

7.
An elementary model for the dissolution of pure hydrate in undersaturated water is proposed that combines intrinsic decomposition within a desorption film and the subsequent diffusion of the released hydrate guest species into bulk water. Applying the proposed approach to recently published measurements of the decomposition rates of methane (CH4) and carbon dioxide (CO2) hydrates in deep seawater suggests that the concentration of the hydrate guest species at the interface between desorption film and diffusive boundary layer may be much lower than ambient solubility. Calculations, however, fail to account for the observed proportionality of decomposition rate with solubility for both CH4 and CO2 hydrates. This may indicate a limitation in the range of applicability of published formulas for intrinsic hydrate decomposition rates.  相似文献   

8.
Thermodynamic stability and hydrogen occupancy on the hydrogen+tetra-n-butyl ammonium fluoride semi-clathrate hydrate have been investigated by means of phase equilibrium (pressure-temperature) measurements and Raman spectroscopic analyses for two mole fractions, 0.018 and 0.034 (stoichiometric for the cubic structure) of tetra-n-butyl ammonium fluoride aqueous solutions. In the case of higher concentration (0.034), the stability boundary curve of hydrogen+tetra-n-butyl ammonium fluoride semi-clathrate hydrate locates at about 23 K higher temperature than that of hydrogen+tetrahydrofuran mixed gas hydrate. The storage capacity of hydrogen in the cubic structure for the hydrogen+tetra-n-butyl ammonium fluoride semi-clathrate hydrate is smaller than that of hydrogen+tetrahydrofuran mixed gas hydrate. In the case of hydrate prepared from the lower concentration (0.018) of aqueous solution, the Raman spectra and phase behavior reveal that the cubic structure of semi-clathrate hydrate is changed to a different one at about 9 MPa and 299.2 K. The new structure can entrap larger amount of hydrogen than the cubic one. The stability boundary curve of hydrogen+tetra-n-butyl ammonium fluoride semi-clathrate hydrate obtained in the aqueous solution of lower mole fraction (0.018) is shifted to slightly low-temperature or high-pressure side from that of higher mole fraction (0.034).  相似文献   

9.
离子液体对二氧化碳有良好的溶解性能,可以实现二氧化碳的固定与转化。超临界二氧化碳可以从离子液体/有机物体系中选择性萃取有机物,避免相间的交叉污染,实现离子液体的回收。从CO2在离子液体中的溶解度实验测定方法、CO2/离子液体二元体系高压相平衡测定、SC-CO2/离子液体/有机物的三元体系相平衡研究以及模型预测四个方面介绍了CO2/离子液体体系相平衡研究的最近进展,分析了这一研究领域的发展方向。  相似文献   

10.
A recently developed method in modelling electrolyte solutions is extended to include phase behaviour of aqueous solutions containing hydrated salts (e.g., calcium chloride) and organic hydrate inhibitors (e.g., ethylene glycol). A novel salt precipitation model applicable to various hydrated salts is presented. The precipitation model takes into account various precipitates of hydrated salts over a wide range of temperature (i.e., -20-120 °C). Due to lack of the required experimental data in the literature, new experimental data have been generated. These data, which have been used in determining the binary interaction parameters between salts and organic inhibitors, include; freezing point depression, boiling point elevation, and salt solubility in the aqueous solutions containing salts and organic inhibitors. The extended thermodynamic model is capable of predicting complex vapour-liquid-solid equilibria (VLSE) for aqueous electrolytes and/or organic inhibitor solutions over a wide range of pressure, temperature and inhibitor concentration.In addition, in order to establish the effect of a combination of salts and organic inhibitors on the locus of incipient hydrate-liquid water-vapour (H-LW-V) curve, reliable equilibrium data have been generated for one quaternary system, methane/water/calcium chloride/ ethylene glycol at pressures up to 50 MPa. These data along with various independent literature data are used to validate the predictive capabilities of the model for phase behaviour and hydrate equilibria. Good agreement between experimental data and predictions is observed, demonstrating the reliability of the developed model.  相似文献   

11.
Hydrate dissociation conditions of hydrogen sulfide in the presence of aqueous solution of thermodynamic inhibitor (methanol, ethanol, ethylene glycol, NaCl, KCl and CaCl2) is modeled in this communication. A thermodynamic model is developed to correlate the hydrate dissociation conditions for the systems of H2S + water + salt (single and mixed salts of NaCl, KCl and CaCl2), H2S + water + alcohol (methanol or ethanol), H2S + water + ethylene glycol and H2S + water + mixed salt, and methanol/ethylene glycol. Extended-UNIQUAC (e-UNIQUAC) approach is used for modeling of the activity coefficient of water in aqueous phase. The structural parameters of e-UNIQUAC model are extracted from literature but interaction parameters of this model are obtained by fitting the model with experimental data. The results of the present model are in satisfactory agreement with experimental data.  相似文献   

12.
Small, cationic tetraalkylammonium ions (particularly for alkyl=butyl or pentyl) are known to inhibit tetrahydrofuran (THF) and natural gas hydrate crystal growth and have been used as synergists for commercial kinetic hydrate inhibitor polymers (KHIs), such as N-vinylcaprolactam polymers, for a number of years. The ability for small, organic anionic molecules to inhibit (THF) hydrate crystal growth and their potential as KHI synergists in blends with poly(N-vinylcaprolactam) have been investigated. Several series of sodium alkyl carboxylates, sulphates and sulphonates were synthesised. It was found that none of these molecules were capable of inhibiting THF hydrate crystal growth as well as the best tetraalkylammonium salts. Alkyl carboxylates appeared to be more effective as inhibitors than the sulphonates or sulphates. The most effective anionic THF hydrate crystal growth inhibitors had butyl or pentyl groups, with alkyl branching at the tail (i.e. iso- rather than n-isomers) being advantageous. Anionic carboxylate molecules, particularly with isopentyl or isobutyl groups, showed some kinetic inhibition synergy with poly(N-vinylcaprolactam) lowering the onset and catastrophic hydrate formation temperatures in high pressure (78 bar) constant cooling experiments with Structure II hydrates by 1–2 °C when dosed at 2500 ppm compared with using 2500 ppm polymer alone. This synergism was however less than the best tetraalkylammonium salts (alkyl=n-butyl or n-pentyl) at the same test conditions. Sodium butyl sulphonate and sodium 4-methylpentanoate did not prevent hydrate agglomeration with 3.6% brine and decane at 25% water cut in stirred sapphire cells when dosed at 20,000 ppm based on the aqueous phase, whereas 10,000–20,000 ppm active material of several commercially available anti-agglomerants gave fine transportable slurries and no hydrate deposits at the same conditions.  相似文献   

13.
Kinetic hydrate inhibitors (KHIs) are water-soluble polymers designed to delay gas hydrate formation in gas and oilfield operations. Inhibition of growth of gas hydrate crystals is one of the mechanisms by which KHIs have been proposed to act. One class of commercial KHIs is the hyperbranched poly(ester amide)s. We have investigated the ability of a range of structurally different hyperbranched poly(ester amide)s to inhibit the crystal growth of tetrahydrofuran (THF) hydrate which forms a Structure II clathrate hydrate, the most common gas hydrate structure encountered in the upstream oil and gas industry. The results indicate that there is an optimum size of hydrophobic groups attached to the succinyl part of the polymer, which gives best crystal growth inhibition. However, total inhibition was impossible to achieve even at a concentration of 8000 ppm of one of the best polymers at a subcooling of 3.4 °C, tentatively suggesting that polymer adsorption onto natural gas hydrate crystal surfaces is probably not the primary mechanism of kinetic inhibition operating in field applications with this class of KHI.  相似文献   

14.
The four-phase coexistence curves for the structure-H hydrates of methylcyclohexane and cis-1,2-dimethylcyclohexane in the presence of methane are measured in the temperature range 274.09- and pressure range 1.42-. Very large pressure reductions from the pure methane hydrate are observed by forming structure-H hydrates. The present investigation on the trans-1,2-dimethylcyclohexane system reveals that the limit of the largest-cage occupancy for the structure-H hydrate is laid between the 1,2-dimethylcyclohexane stereo-isomers.  相似文献   

15.
During the development and application of natural gas, hydrate plugging the pipelines is a very important issue to solve. Currently, adding thermodynamic hydrate inhibitors (THIs) and kinetic hydrate inhibitors (KHIs) in gas-dominated pipelines is a main way to prevent hydrate plugging of flow lines. This paper mainly reviews the efforts to develop THIs and KHIs in the past 20 years, compare the role of various THIs, such as methanol, ethylene glycol and electrolyte, and give the tips in using. The direction of KHIs is toward high efficiency, low toxicity, low pollution and low cost. More than a hundred inhibitors, including polymers, natural products and ionic liquids, have been synthesized in the past decade. Some of them have better performance than the current commercial KHIs. However, there are still few problems, such as the complex synthesis process, high cost and low solubility, impeding the commercialization of these inhibitors. The review also summarized some application of KHIs in China. Research of KHIs in China began late. There are no KHIs used in gas pipelines. Only a few field tests have been carried out. In the end of this paper, the field test of self-developed KHIs by China is summarized, and the guidance is given according to the application results.  相似文献   

16.
A one-dimensional mathematical model is presented to describe biochemical reactions and diffusion occurring within massive seafloor gas hydrates. Methanogenesis and anaerobic methane oxidation coupled with sulfate reduction are the two reactions analyzed with emphasis on gas hydrate stability. Many numerical simulations are being developed to predict gas hydrate formation, dissociation, and stability. The model complements these simulations as a subunit by incorporating the consequences of kinetic and transport processes occurring within seafloor gas hydrate capillaries. Better predictions of gas hydrate stability will assist in understanding the role of gas hydrates in the global carbon cycle, particularly as pertaining to global warming.  相似文献   

17.
Poly(N-vinyl pyrrolidone) (PVP) containing the 5-ring lactam and poly(N-vinyl caprolactam) (PVCap) containing the 7-ring lactam are well-known kinetic hydrate inhibitors (KHIs). For the first time we have synthesised and studied the performance of poly(N-vinyl piperidone) (PVPip), containing the 6-ring lactam, as a kinetic hydrate inhibitor. In the first part of the study we have investigated the ability of PVPip to inhibit the growth of tetrahydrofuran SII hydrate crystals. The results are compared to those of PVP and PVCap. Various polymer molecular weights have been investigated at varying subcoolings. PVPip shows an intermediate growth inhibition performance compared to PVP and PVCap at similar polymer molecular weights. In addition, the weight percentage concentration of polymer needed to achieve complete THF hydrate crystal growth inhibition increases as the polymer molecular weight decreases.  相似文献   

18.
It has been regarded that the limit of the largest cage occupancy for the structure-H hydrate is between the 1,2-dimethylcyclohexane stereo-isomers, because the cis-isomer is able to generate the structure-H hydrate in the presence of methane while the trans-isomer is not. In the present study, gas hydration of trans-1,2-dimethylcyclohexane in the presence of methane and cis-1,2-dimethylcyclohexane is found from stability boundaries for the structure-H hydrate system.  相似文献   

19.
In this study, we made a novel observation that by introducing a monomeric sugar or a disaccharide into an acetonitrile-water solution, the acetonitrile (ACN) can be separated from water to form a new phase. The two-phase formation triggered by sugar addition was visualized with Sudan I. The ability of different sugars to form an ACN-water two-phase system and the effect of glucose and xylose concentration on the phase separation were studied. The distribution of syringic acid, furfural, para-coumaric acid, ferulic acid and 5-hydroxymethyl furfural in the upper ACN phase and lower water phase was examined. The lower concentration limit for the two-phase formation for glucose and xylose at 1 °C was 15 and 25 g/L, respectively. At higher temperatures, the concentration needed for phase separation increased. Addition of polysaccharides (starch and dextran) did not result in phase separation. The distribution coefficient of the five organic compounds in the ACN-water two-phase system was in the range of 1.7-8.9 when the corresponding sugar concentration was 15-50 g/L. The phase ratio of the five organic compounds in the two-phase system was in the range of 0.1-0.5. The new two-phase system may find applications in the separation of chemicals having different solubility in water and in ACN.  相似文献   

20.
Hydrate-based desalination could be a promising technique for producing fresh water from saline water, as it is an eco-friendly process and suitable for large-scale implementation. To make the hydrate-based desalination technology easily scalable, we looked at using air (or N2) or CO2 as a hydrate former, along with cyclopentane (CP). Hydrate former CP helps to reduce the operating conditions, as CP forms hydrate at ambient pressure. However, hydrate formation kinetics due to water-insoluble CP is slow. In this work, the kinetics of hydrate formation in saline water were investigated and compared to identify the utility of CO2 and N2 as hydrate formers for desalination work. The addition of CP as a hydrate former should transform the structure of CO2 hydrate from structure I (sI) to structure II (sII), as CP occupies the large cages (51264) in the gas hydrate. A set of three similar reactors were used for this study to collect data quickly. Furthermore, the triple reactor setup is a unique reactor design mounted on a shaker, and a set of SS-316 balls present inside the horizontal reactor imparts the mixing. Experiments with the CO2-CP mixture and N2-CP mixture have been studied in the presence or absence of 3 wt.% NaCl at 274 K and 3 MPa pressure. The gas uptake kinetics, water recovery, and separation efficiency have been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号