共查询到18条相似文献,搜索用时 54 毫秒
1.
为提高视频异常行为检测的准确率,本文提出了一种基于前景区域生成对抗网络的改进方法。通过提取实际视频帧的前景和背景掩码,确定生成对抗网络输出视频帧的待检测前景区域。针对待检测前景区域,应用前景区域峰值信噪比准则,计算异常行为检测得分,完成视频异常行为检测。实验结果表明,本文的检测方法在Avenue数据集、UCSD-Ped1数据集、UCSD-Ped2数据集上均能有效提高视频异常行为检测准确率,并能降低检测运行时间。 相似文献
2.
针对现有对抗样本防御方法防御能力不足、时间消耗过高等问题,参考生成对抗网络与集成学习在对抗样本研究中的优势,本文提出一种基于生成对抗网络的对抗样本集成防御方法.该方法使用生成对抗网络训练多个能够消除对抗样本表面对抗扰动的生成器,使用集成学习方法将多个生成器进行集成作为最终的防御.该方法的生成对抗网络由生成器和判别器组成... 相似文献
3.
夏文志 《信息工程大学学报》2021,22(2):185-190
针对不断更新的对抗攻击,提出一个基于生成对抗网络的防御系统.系统利用生成对抗网络不断生成新的对抗样本,反复训练模型以增强其鲁棒性.具体过程为将预先训练的卷积神经网络和外部GAN(conditional GAN:Pix2Pix)相结合,自动流水线式地推断对抗样本和干净样本之间的转换关系,并合成新的对抗样本.根据分辨得到的... 相似文献
4.
提出了一种基于图样-星座双判别器生成对抗网络(Pattern-Constellation dual GAN)的正交频分复用(OFDM)信号生成方案。首先,使用快速傅里叶变换(FFT)对时域OFDM信号进行预处理,得到的频域符号向量被拼接为二维数据矩阵,用于GAN的训练和测试。为保证生成的信号具有协议要求的子载波结构和调制方式,设计了双判别器GAN:生成器生成时频二维图样以欺骗两个判别器,而两个判别器分别从子载波结构和调制符号的星座密度两个方面区分生成的图样和真实图样。最后,以Wi-Fi 802.11a协议为例验证了该方案的有效性。 相似文献
5.
古诗插图自动生成是非常具有挑战性的任务。提出了一种新的方法,通过使用注意力机制的生成对抗网络,输入古诗文字和草绘图,经由网络输出古诗插图。该模型在利用编码与解码的图片生成结构的同时,结合注意力机制,将图像色彩及轮廓特征进行了提取,生成器中加入了残差网络模块,增加了网络深度,同时提高了网络模型的效果,最终生成图像质量更高的古诗插图。实验结果表明,所提方法相较于对比方法,在图像质量和色彩渲染方面均有优势,输入的古诗和草图经过网络模型,生成了较为符合古诗意境的插图。 相似文献
6.
为了解决生成对抗网络中因生成图像的特征信息表示不足而导致生成效果特征不明显、图像的关键特征信息模糊的问题, 提出了一种条件自我注意生成对抗网络的图像生成方法。该网络结合自我注意生成对抗网络的优点,向生成器和判别器中添加附加条件特征,明确指示模型生成对应的标志性类别信息,将数据的具体维度与语义特征关联起来,用这种方法提取其中的生成模型,使生成特定类型的图像的特征表示更加贴合原始数据分布。实验结果表明,所提出的方法在CelebA和MNIST数据集上的弗雷歇距离值相比较于自我注意生成对抗网络分别约提高了1.26和2.47。验证了所提出的方法相比较于其他的监督类生成模型可以有效地提升图像的质量效果以及多样性,并且可以有效地加快网络的收敛速度。 相似文献
7.
为了提高偏转人脸转正的效果,借鉴双通道生成对抗网络(TP-GAN)双通道生成的思想,将原始网络中的深度卷积生成对抗网络(DCGAN)替换成边界均衡生成对抗网络(BEGAN). 在传统两者对抗的网络结构中加入判别人脸身份的分类器,形成三者对抗的网络结构. 经实验对比可知,与在生成器损失函数中添加约束相比,结构上加入分类器对人脸身份一致性的保持更加有效. TP-GAN存在训练复杂、模式崩溃等难题,使用BEGAN的网络结构,可以避免这些问题,提高训练效率. 在Multi-PIE数据集及LFW上的实验结果表明,利用提出的方法能够高效地生成高质量的正面人脸图片,且保留人脸的身份特征. 相似文献
8.
该文针对模式崩溃的问题,从多生成器博弈强迫每个生成器生成不同模式数据的思路出发,提出了一种基于多生成器的生成对抗网络(IMGAN).IMGAN在多个生成器之间采用参数共享的方式来加速训练,同时采用最后一层独立训练的方式来弱化参数同一性所带来的影响;引入一个正则惩罚项使得损失函数可以更好地满足Lipschitz连续,一定... 相似文献
9.
针对目前基于深度学习的压缩感知重建网络存在单通道重建网络没有深入挖掘图像的多尺度特征,缺乏对重建网络的反馈机制,并且重建网络缺乏与测量矩阵的关联,制约了重建质量的进一步提升的问题,提出了一种多尺度生成对抗网络下图像压缩感知与重建算法。该算法先通过多通道残差块提取图像的多尺度信息,加入判别网络形成对多尺度生成网络的反馈,再将全卷积测量网络与重建网络联合训练,以提升图像重建质量。实验结果表明:本文方法相对于ISTA-Net+方法在3种采样率下重建精度提高了2.02~4.09 dB。 相似文献
10.
针对生成对抗网络生成字体存在笔画缺失、字形结构错乱、图像模糊与质量差的问题,提出改进zi2zi生成对抗网络的书法字生成算法.在编码器中引入卷积核为1的残差块,提高生成器提取书法字体细节特征的能力,通过增加上下文感知注意力结构提取书法字体的风格特征.在判别器中利用谱归一化增强模型的稳定性,避免因模型训练不稳定而带来的模式崩塌.采用最小绝对误差L1范数约束生成字体边缘特征,使得字体轮廓更加清晰,最终生成2种风格的书法字.颜真卿楷书与赵孟頫行书目标风格数据集的测试结果表明,提出算法的主观客观评价结果均优于对比算法,与zi2zi相比,峰值信噪比分别提高了1.58、1.76 dB,结构相似性分别提高了5.66%、6.91%,感知相似性分别降低了4.21%、6.20%. 相似文献
11.
生成对抗网络(Generative Adversarial Network, GAN)可以生成和真实图像较接近的生成图像.作为深度学习中较新的一种图像生成模型,GAN在图像风格迁移中发挥着重要作用.针对当前生成对抗网络模型中存在的生成图像质量较低、模型较难训练等问题,提出了新的风格迁移方法,有效改进了BicycleGAN模型实现图像风格迁移.为了解决GAN在训练中容易出现的退化现象,将残差模块引入GAN的生成器,并引入自注意力机制,获得更多的图像特征,提高生成器的生成质量.为了解决GAN在训练过程中的梯度爆炸现象,在判别器每一个卷积层后面加入谱归一化.为了解决训练不够稳定、生成图像质量低的现象,引入感知损失.在Facades和AerialPhoto&Map数据集上的实验结果表明,该方法的生成图像的PSNR值和SSIM值高于同类比较方法. 相似文献
12.
针对血细胞图像中白细胞样本较少和生成细胞图像细节不清晰,导致检测精度较低的问题,提出基于多尺度鉴别器的条件生成对抗网络. 该网络通过生成并添加大量逼真的白细胞图像到分类检测网络训练集的方式,实现对血细胞图像的生成和分类检测. 在现有条件生成对抗网络真假鉴别器中,引入多尺度卷积核、池化域并在通道上拼接,提升鉴别器对微观细节纹理特征和宏观几何特征的鉴别能力;引入梯度相似性损失函数,以提高生成细胞图像的亮度及边缘清晰度,提升图像的真实感. 实验证明,在图像生成阶段,增加多尺度鉴别器和梯度相似性损失函数提高了生成细胞图像的质量;在图像分类检测阶段,对比仅有真实数据训练的情况,增加细胞样本多样性使细胞分类检测的平均精度由90.4%提升至94.7%. 相似文献
13.
To improve the accuracy of cross-modal pedestrian re-identification,a reciprocal bi-directional generative adversarial network-based method is proposed.First,we build two generative adversarial networks to generate cross-modal heterogeneous images.Second,an associated loss is designed to pull close the distribution of features in latent space during the image translation between visible and infrared images so as to help the networks generate fake heterogeneous images that have high similarity with the real images.Finally,by concatenating the original and generated heterogeneous pedestrian images into the discriminative feature extraction network,images from different modalities can be unified into a common modality,thus suppressing the cross-modal gap.Representation learning and metric learning are utilized to achieve more discriminative pedestrian features.Comparative experiments are conducted on SYSU-MM01 and RegDB datasets to analyze the accuracy with different loss functions.Compared with other state-of-the-art cross-modal pedestrian re-identification methods,the proposed method achieves a higher accuracy and stronger robustness. 相似文献
14.
为了解决太阳能电池样本不均衡问题,提出负样本引导生成对抗网络的太阳能电池缺陷样本增强方法. 通过在生成对抗模型中引入大量负样本和增加负样本引导损失,促进模型对正样本特征的表达,提升生成样本的多样性;设计自适应的权值约束方法,平衡生成器和判别器的表达能力,提升生成样本的质量. 实验结果表明,在太阳能电池电致发光(EL)缺陷数据集上,提出方法的生成质量和检测精度优于深度卷积生成对抗网络(DCGAN)、梯度惩罚Wasserstein距离生成对抗网络(WGAN-GP)和一阶导数生成对抗网络(FOGAN);该方法的F测度较DCGAN、WGAN-GP和FOGAN分别最高提升了10%、8%和5%,具有较好的数据增强性能. 在带钢表面缺陷数据集及DAGM 2007公共数据集上,提出方法的性能优于DCGAN、WGAN-GP和FOGAN,具有一定的泛化能力. 相似文献
15.
为了提高图像去雾的性能, 提出结合大气散射模型生成对抗网络的去雾算法. 算法在pix2pix GAN基础上进行改进, 将网络的生成器改进成双解码器结构,通过双解码器分别生成无雾图像和透射率图, 并结合大气散射模型还原雾图像,以进一步提高图像分解的质量. 在马尔科夫判别器结构中,采用反向学习机制代替随机裁剪机制,以有效降低因采用随机裁剪算法而导致的判断结果不准确的概率. 在原有的损失函数上,加入雾霾损失函数,提高图像转化的质量. 在STOS和NYU数据集上进行消融实验和对比实验. 大量实验表明所提出方法在PSNR和SSIM指标上比原算法Pix2pix GAN有所提高, 且均优于现有去雾算法,复原图像具有清晰度高、噪声低、纹理丰富的优点. 相似文献
16.
针对民用飞行器安全性、可靠性要求严苛,实际民航运营中飞行参数的异常样本稀少,整体样本不平衡且缺少标注的问题,研究深度学习与生成对抗网络技术,提出基于改进生成对抗网络的飞参数据飞行级异常检测方法. 该方法不依赖样本数量与标签,实现无监督学习的检测方法. 针对飞参数据,输入正常数据样本,应用易收敛的WGAN-GP改进型生成对抗网络模型,模拟生成正常数据样本,计算输入数据与模拟正常数据的巴氏距离,实现对异常数据的检测. 通过美国国家航空航天局模拟飞参数据的人工合成数据集以及真实运营环境下采集的快速存取记录器数据构建的飞参数据集,开展试验验证. 结果表明,与常用无监督模型相比,提出方法在部分异常检测性能指标上有显著提升. 相似文献
17.
针对不同流速类类间差异小而造成的分类困难问题,提出条件边界平衡生成对抗网络和多特征融合的卷积分类网络,分别进行流速图像的生成和分类. 为了达到数据增强效果,引入标签机制和验证模块实现相应类别图像数据的拟合与生成;为了加强图像不同纹理特征信息对流速估测的影响,引入多特征融合机制对所有真实样本和生成伪样本进行特征提取和流速识别,实现对差异性较小的图像的分类. 将该方法应用于实际的河流表面流速估测,结果表明,在图像生成模块中,引入的标签信息和验证机制在一定程度上能强制引导模型的数据生成方向;在图像识别模块中,引入的多特征融合机制使所提出方法相较于其他方法,在差异性较小的水流图像的识别上更具鲁棒性. 相似文献
18.
研究一种基于改进的生成对抗网络的深度学习方法对海马体进行分割。提出不同的卷积配置,以捕获由分割网络获得的信息。提出以Pixel2Pixel为基本架构的生成对抗网络模型,生成模型结合残差网络以及注意力机制的编解码结构以捕获更多细节信息。判别网络采用卷积神经网络对生成模型的分割结果和专家分割结果进行判别。经过生成模型和对抗模型不断地传递其损失,使生成模型达到分割海马体的最优状态。使用来自ADNI数据集130名健康受试者的T1加权MRI扫描和相关海马标签作为训练和测试数据,以相似度系数作为评价指标,准确率达到89.46%。试验结果表明,该网络模型可以实现高效地自动分割海马体,对于阿尔茨海默症等疾病的正确诊断具有重要的现实意义。 相似文献