首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
唐群 《稀有金属》2001,25(6):468-470
对复合在钢基体上的WC-Ni-Fe-Co系“双层金属布”硬质涂层的相对耐磨系数ε进行了测定,对比耐磨件是HRC60的高速钢,实验采用磨粒磨损和摩擦磨损,实验结果表明WC-Ni-Fe-Co系“双层金属布”涂层耐磨性明显优于高速钢(HRC60),涂层耐磨性主要与WC相含量有关。  相似文献   

2.
《钛工业进展》2018,35(6):31-35
选用抗氧化性和韧性良好的WC7Co陶瓷颗粒作为增强相,利用激光熔覆的方法在TA2纯钛表面制备WC7Co/TC4复合耐磨涂层,借助扫描电子显微镜、能谱仪、X射线衍射仪和显微硬度计,分析表征复合涂层显微组织特征、WC7Co陶瓷颗粒界面反应行为以及复合涂层中相的演变规律。结果表明:根据激光熔覆过程中WC7Co颗粒的演变状态,复合涂层中存在2种典型显微组织,分别为未分解WC7Co颗粒强化组织和WC7Co分解后与Ti反应生成的W、TiC和Ti的共晶组织;复合涂层中WC7Co颗粒与TC4基质结合界面形成了2~3μm的反应层,反应生成物主要为W和TiC;复合涂层中的物相主要为Ti固溶体、W单质及TiC、VC、Co_3W_3C、W_2C等化合物。  相似文献   

3.
“柔性金属贴布”涂层技术 ,是近年来研究开发的一种金属表面特别是形状复杂钢铁工件表面复合涂层新技术。“柔性金属贴布”涂层技术由粉末冶金制粉 ,有机和无机增塑剂、粘结剂、粉末增塑轧制或刮板成形 ,粉末冶金熔渗烧结 ,异质材料连接等技术综合而成。主要工艺为 :先将所需成分的粉末 (包括金属陶瓷 ,碳化钨、碳化钛、氮化钛等粘结金属及铁、铜、钴、镍等粉末 )与有机和无机成形剂、粘结剂、增塑剂制成一面特殊粘附层并像布一样柔软的“金属贴布” ,然后冲裁成所需形状粘贴在金属工件表面 ,然后采用适当的方式加热 ,即可在金属表面形成具…  相似文献   

4.
WC粒度对超音速火焰喷涂WC-10Co-4Cr涂层耐腐蚀性能的影响   总被引:2,自引:0,他引:2  
采用制粒?高温快速烧结法制备两种分别含亚微米级和微米级WC粒径的WC-10Co-4Cr喷涂粉末,并用超音速火焰喷涂(HVOF)技术在45#钢基体上制备涂层;利用扫描电子显微镜和电化学工作站分别对涂层的显微形貌及耐腐蚀性能进行分析检测,探讨WC粒度对涂层耐腐蚀性能的影响和涂层的电化学腐蚀机理。研究结果表明:两种涂层组织致密,界面结合良好;含亚微米级WC粒径的涂层具有相对较低的孔隙率,使其涂层的耐腐蚀性能优于含微米级WC粒径的涂层。在3.5%NaCl溶液中涂层的硬质相WC和粘结相Co发生电偶腐蚀,且低电位的Co相优先腐蚀,导致WC颗粒脱落,出现凹坑及点蚀现象。  相似文献   

5.
采用超音速火焰喷涂方法在45号钢基体上制备了NiCr、316L、10Co4Cr/WC、12Co/WC等4种涂层,对涂层组织进行了金相观察,测试了涂层的硬度及耐磨性。结果表明,上述涂层与45号钢基体界面结合良好,孔隙率为0.50%~2%,平均厚度20μm左右,不同涂层硬度及耐磨性顺序为:10Co4Cr/WC>12Co/WC>(45号钢基体)>316L>NiCr20。  相似文献   

6.
采用超音速火焰喷涂技术(high velocity oxygen-fuel, HVOF)制备了纳米结构、亚微米结构及常规结构的WC-10Co4Cr涂层, 研究了沉积过程中颗粒尺寸对WC脱碳行为的作用, 分析了WC颗粒尺寸对复合涂层微观组织、硬度、断裂韧性及界面结合强度的影响。结果表明: 随着WC颗粒尺寸的增大, WC脱碳率和涂层孔隙率先增大后减小, 而涂层硬度和断裂韧性先减小后增大, 界面结合强逐渐降低。在100 g压痕载荷下, 亚微米和常规结构涂层硬度的Weibull分布呈双峰特征, 而在300 g压痕载荷下, 3种结构涂层硬度的Weibull分布均呈单峰特征, 这是3种结构涂层的WC脱碳程度、层间结合力和孔隙率综合作用结果。WC-10Co4Cr纳米结构涂层呈现出低脱碳率、高硬度、高界面结合强度和适中断裂韧性的优异综合性能。  相似文献   

7.
热喷涂WC—Co涂层由于具有硬度高及耐磨性能优良的特性作为耐磨涂层已得到了迅速的发展及广泛的应用。本文综述了国内外在利用热喷涂技术制备WC—Co复合涂层方面的研究进展;介绍了WC—Co热喷涂复合粉末的制备、各种热喷涂方法的工艺特点,比较了不同工艺方法制备的各种WC—Co涂层的组织结构及性能。综合研究表明:HVOF工艺更适合制备多峰及纳米结构WC—Co涂层;与传统WC—Co涂层比较,多峰和纳米结构WC—Co涂层在机械性能以及耐磨性能方面均有较大提高。  相似文献   

8.
采用1步烧结法,在原料粉末中添加中颗粒Ti(C,N)的情况下制备表面含脱β层的梯度结构硬质合金。分别采用扫描电镜(SEM)、X射线衍射(XRD)及能谱技术(EDS)分析合金样品的微观组织、相组成及成分分布。结果表明,在1 420℃下真空烧结时,初始成分不含Ti(C,N)的合金样品的组织为均质结构,由WC,Co基粘结相及(Ti,W)C三相组成;初始成分含有Ti(C,N)的合金样品表层形成了脱β层,脱β层中仅存在WC,Co基粘结相2相,芯部的组织除WC,Co基粘结相及(Ti,W)C 3相以外,还存在少量近球形未溶解的Ti(C,N)核心。脱β层既是1个缺立方相层,也是1个富钴层。  相似文献   

9.
以-45~+15μm WC10Co4Cr团聚烧结球形喷涂粉末为原料,采用GTV超音速火焰喷涂(HVOF)系统K2喷枪,通过改变喷涂距离(300、340和380 mm)制备3种涂层,应用金相显微镜、X射线衍射仪、扫描电镜、显微硬度计等表征涂层结构和性能。结果表明:随喷涂距离减小,WC10Co4Cr涂层孔隙率降低、显微硬度增加、耐磨粒磨损性能增强,但粉末的沉积效率降低;喷涂距离为300~380 mm时,WC10Co4Cr涂层的物相组成均为WC、W2C及少量非晶相;喷涂距离为300~340 mm时,WC10Co4Cr涂层显微硬度和耐磨粒磨损性能变化较小;结合磨损区域中心位置的微观结构、涂层物理性能和表面粗糙度变化,探讨WC10Co4Cr涂层的磨粒磨损和喷涂距离的影响机制。  相似文献   

10.
低温超音速火焰喷涂纳米WC-10Co4Cr涂层的显微结构和性能   总被引:1,自引:0,他引:1  
以纳米和微米WC-10Co4Cr粉末为热喷涂粉末,采用低温超音速火焰喷涂(LT-HVOF)和超音速火焰喷涂(HVOF)技术制备了WC-10Co4Cr涂层,采用SEM、XRD、和显微硬度仪等对LT-HVOF WC涂层显微结构和性能进行了表征.结果表明:n-WC涂层、lm-WC涂层的显微结构与普通超音速火焰喷涂WC涂层没有明显的区别,其主晶相为WC; m-WC涂层呈明显的层状结构,涂层中WC颗粒尖端发生了钝化和部分熔化,粒径变小,并形成了WC/的核壳结构;其主晶相为.n-WC涂层显微硬度较lm-WC涂层低,但其韧度高而使涂层的磨损失重最低;m-WC涂层的显微硬度和韧度最低,磨损失重最大.  相似文献   

11.
采用超音速、爆炸喷涂工艺制备钢铁炉辊用MCrAlY涂层,借助XRD、SEM和EDS等手段分析了涂层组织。结果显示:超音速制备涂层中Cr元素含量比粉末成分偏高,Al、Y元素降低,可能在喷涂过程中元素烧损,形成的氧化物在喷涂沉积过程被吹飞,未沉积到涂层中。XRD分析结果显示涂层由Co基固容体、Al,Co、Cr7C3、TaC等相组成。涂层致密,孔隙率低,显微硬度大,结合强度高。相对超音速工艺制备涂层,爆炸喷涂工艺制备的涂层中除铝元素外,分布较均匀,涂层致密度较低,涂层相对显微硬度较高,结合强度二者一致。  相似文献   

12.
超音速火焰喷涂WC-12Co涂层抗磨粒磨损性能研究   总被引:3,自引:0,他引:3  
采用超音速火焰(HVOF)喷涂工艺在316L不锈钢基体上制备了WC-12Co涂层,测试了涂层的结合强度、显微硬度、气孔率以及抗磨粒磨损性能。并利用XRD对喷涂粉末及涂层进行了相结构分析,用扫描电子显微镜对喷涂粉末、磨粒磨损前后的涂层表面形貌进行了观察。结果表明:在喷涂过程中,仅有很少量的WC粒子发生氧化脱碳。涂层的结合强度和显微硬度高,组织结构致密。在相同的实验条件下,316L的磨粒磨损量是WC-12Co涂层的95倍,这表明HVOF制备的WC-12Co涂层具有优异的抗磨粒磨损性能。  相似文献   

13.
采用超音速火焰(HVOF)喷涂工艺在316L不锈钢基体上制备了WC-12Co涂层,测试了涂层的结合强度、显微硬度、气孔率以及抗磨粒磨损性能。并利用XRD对喷涂粉末及涂层进行了相结构分析,用扫描电子显微镜对喷涂粉末、磨粒磨损前后的涂层表面形貌进行了观察。结果表明:在喷涂过程中,仅有很少量的WC粒子发生氧化脱碳。涂层的结合强度和显微硬度高,组织结构致密。在相同的实验条件下,316L的磨粒磨损量是WC-12Co涂层的95倍,这表明HVOF制备的WC-12Co涂层具有优异的抗磨粒磨损性能。  相似文献   

14.
HVOF喷涂亚微米级WC-12Co涂层的物相变化与耐磨损性能   总被引:1,自引:0,他引:1  
本文采用超音速火焰喷涂技术,以含有亚微米级WC颗粒的WC-12Co热喷涂粉末为原料,制备高硬度、高耐磨性的WC-12Co金属陶瓷涂层。通过金相显微镜、扫描电子显微镜、X射线衍射仪、显微硬度计和磨损实验机等对涂层的微观组织结构及其耐磨性能进行了研究。研究结果表明:在喷涂过程中,所选用的各组工艺参数所制备的涂层中WC颗粒都发生了少量的脱碳分解;丙烷燃气流量越低、氧气流量越低、喷涂距离越长,WC的脱碳分解程度越低。在干磨擦、负载15kg、对磨环转速200r/min的条件下,涂层的磨损机制为:初期为对软相金属Co的犁沟切削,然后以硬质的WC作为磨粒的磨粒磨损为主,磨损后期还出现了一定程度的粘着磨损。在磨损过程中发生了少量物相转移,在涂层表面可以检测到Fe元素。  相似文献   

15.
采用Ni25、Ni45、Ni60合金粉末通过烧结熔覆法在45钢表面制备出不同成分的镍基合金涂层。通过金相显微镜观察和X射线衍射分析等手段对合金涂层的组织形貌、相组成和界面结构进行研究,并对涂层显微硬度进行了测试。结果表明:通过烧结熔覆可以在45钢表面获得较为致密的镍基合金涂层。Ni25合金涂层组织主要为比较粗大的γ-(Ni, Fe)奥氏体以及少量的Cr23C6碳化物相;Ni45和Ni60合金涂层中除了γ-(Ni, Fe)奥氏体和Cr23C6碳化物之外,还出现了CrB硼化物。不同成分镍基合金涂层与45钢基体在界面处均形成了良好的冶金结合。当烧结温度1100℃、保温时间15 min时,涂层微观组织致密,硬质相颗粒尺寸较小,分布均匀。Ni60合金涂层的硬度最高,约为HV 735;Ni45合金涂层次之,约为HV 534;Ni25合金涂层硬度最低,只有HV 236。  相似文献   

16.
采用喷雾造粒和真空烧结工艺制备粒度15~45μm的WC-12%Co(WC12Co)、WC-17%Co(WC17Co)、WC-10%Co-4%Cr(WC10Co4Cr)球形喷涂粉末,并采用超音速火焰喷涂(HVOF)法在同一喷涂参数下制备WC12Co,WC17Co,WC10Co4Cr涂层,应用金相显微镜、X-射线衍射仪、扫描电镜、显微硬度计等表征粉末和涂层的结构和性能。结果表明:制备的3种碳化钨基喷涂粉末球形度高,流动性好(~13s/50g),松装密度接近(4.8~5.0 g/cm3),粉末物相均为WC和Co相,各粉末微观结构和物理性能均满足液体燃料HVOF喷涂要求;3种粉末制备的涂层的沉积率高(52%~55%)、孔隙率低(1.1%)、显微硬度高(1200~1 300 HV300g);各涂层脱碳程度小,涂层物相均为WC、W2C和非晶或纳米晶相;相同喷涂工艺下WC17Co、WC12Co、WC10Co4Cr涂层的耐磨粒磨损性能依次增强,同时WC10Co4Cr涂层具有较强的耐盐雾腐蚀性能。  相似文献   

17.
利用高能球磨制备的纳米晶W(Co,C)过渡相粉末制备了纤维状WC硬质合金。采用X射线衍射(XRD)分析球磨粉末及不同温度烧结样品的相组成,并计算WC晶粒尺寸;通过矫顽力研究高能球磨粉末Co的存在方式以及固相烧结阶段粉末相转变和晶粒长大行为。结果表明:球磨粉末中矫顽力由0(球磨时间22h)逐渐增加,Co先固溶在W晶格中,随球磨时间增加析出;烧结温度为700~900℃时,矫顽力由0急剧增加,η相分解析出单磁畴的Co,WC晶粒长大较慢;烧结温度为1 050~1 250℃时,矫顽力下降,大量多磁畴Co出现,WC晶粒长大速度加快;烧结温度为900~1 050℃时,矫顽力几乎不变,WC晶粒长大缓慢;烧结温度超过1 250℃时,矫顽力缓慢增加,Co相晶型发生改变。  相似文献   

18.
以微米、纳米WC为增强相,自熔合金Ni60A为钎焊材料,采用感应钎焊的方法在Q235低碳钢基体上制备了微纳米WC—Ni基复合涂层。通过用扫描电镜观察涂层的显微组织、用X射线衍射分析相组成和用能谱分析涂层的成分,研究了纳米颗粒WC的加入对涂层的显微组织和相组成的影响,以及对涂层硬度和耐磨性能的影响。结果表明,在相同试验条件下,添加纳米WC的涂层中,相组成中WC相较多,并且出现了少量的W2C硬质相,提高了涂层的硬度和耐磨性。  相似文献   

19.
为实现钨与铜的冶金可靠连接,采用浸渗法在纯钨材料表面制备一层含镍涂层。利用SEM及EDS研究不同浸渗熔体所对应的涂层/钨界面显微组织与成分分布。结果表明:于1 500℃温度通过Ni-Fe、Ni-Cu、Ni三种熔体浸渗,钨材表面对应形成的Ni-Fe涂层、Ni-Cu涂层、Ni涂层均与钨实现了冶金结合;Ni-Fe涂层对应的钨界面形成了由圆滑W颗粒相和少量粘结相组成的钨基高密度合金组织;在Ni涂层中,沿钨界面形成了厚1~2μm、由NiW和NiW2组成的化合物层。结合实验结果及W-Ni二元相图,分析了涂层/钨界面组织的形成机制。  相似文献   

20.
采用超音速火焰喷涂(HVOF)工艺制备了纳米结构、双峰结构和常规结构3种WC-CoCr复合涂层。探讨了不同WC粉末粒度对涂层沉积过程的脱碳行为、涂层微观组织及力学性能的影响。结果表明:随WC颗粒尺寸减小,涂层脱碳率增大,W_2C含量增加,孔隙率降低,涂层的显微硬度和界面结合强度增大;但是纳米结构涂层中粘结相的非晶化现象严重,断裂韧度显著下降;双峰结构涂层因纳米、亚微米WC颗粒的合理搭配和协同效应表现出最好的断裂韧性,同时兼具较高的显微硬度和界面结合强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号