首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative activities of 10 glucosinolates in stimulating oviposition byP. rapae andP. napi oleracea were compared under the same conditions. When tested at the same concentration, the structurally different glucosinolates stimulated both butterfly species to widely varying degrees. In most cases,P. rapae was more sensitive to aromatic and indole glucosinolates than to aliphatic representatives. This species responded even less to alkyl thio and sulfinyl glucosinolates. However,P. napi oleracea responded strongly to these aliphatic and sulfur-containing members of the group, and the relative activities of aromatic and aliphatic glucosinolates did not show a clear pattern for this species.P. napi oleracea was much more sensitive to low concentrations of sinigrin than wasP. rapae. The threshold concentration for response ofP. napi oleracea to sinigrin was 10–8 M, which was 100 times lower than forP. rapae, butP. rapae was more sensitive thanP. napi oleracea to changes in glucosinolate concentrations. For bothPieris species, an optimal concentration was reached, above which the response remained constant or tended to decrease.  相似文献   

2.
Iberis amara (Cruciferae) contains both stimulants and deterrents that are involved in regulating oviposition byPieris rapae andP. napi oleracea. The most active deterrents toP. rapae isolated from butanol extracts of the plant were found to be 2-O--d-glucosyl cucurbitacin I and 2-O--d-glucosyl cucurbitacin E. However,P. napi oleracea was behaviorally insensitive to these compounds and was only weakly deterred by other individual fractions of the butanol extract. Stimulant activity of the postbutanol water extract ofI. amara was associated with glucosinolates. The most abundant of these was identified as sinigrin, and a relatively minor component was shown to be glucoiberin. The isolated sinigrin was more stimulatory toP. rapae than was the glucoiberin-containing fraction, butP. napi oleracea was stimulated as strongly by the glucoiberin fraction, even though the concentration of this compound was much lower. The contrasting responses of the twoPieris species to the deterrents and stimulants inI. amara can explain the differential acceptance of the plant by these butterflies.  相似文献   

3.
Wormseed mustard,Erysimum cheiranthoides, is unacceptable as a host for the cabbage butterfly,Pieris rapae. However, it is preferred for oviposition byPieris napi oleracea in the greenhouse. Isolation and identification of the oviposition stimulants toP. napi oleracea were accomplished by C18 open-column chromatography, TLC, ion-exchange chromatography, HPLC, UV, and NMR spectroscopy. Glucoiberin and glucocheirolin were identified as the most active stimulants. The extracted glucoiberin was as stimulatory as glucocheirolin, although its concentration in theErysimum plants was about 10 times lower than that of glucocheirolin. These glucosinolates were only weak stimulants toP. rapae. Furthermore,P. rapae was strongly deterred by the cardenolides, erysimoside and erychroside, fromE. cheiranthoides, andP. napi oleracea was less sensitive to these compounds. No other deterrent toP. napi oleracea was detected in this plant species. The results explain the differential acceptance ofE. cheiranthoides by these twoPieris species.  相似文献   

4.
Oviposition responses ofPieris rapae andP. napi oleracea to 18 cardenolides were compared under the same conditions. Effects of different concentrations of selected cardenolides were also tested. Most of the compounds were deterrent to oviposition by both insects, but to significantly different degrees.P. rapae were strongly deterred by K-strophanthoside, K-strophanthin-, cymarin, convallatoxin, oleandrin, erysimoside, erychroside, and gitoxigenin. The most deterrent compounds forP. napi oleracea were erychroside, cymarin, erysimoside, convallatoxin, and K-strophanthoside. Strophanthidin-based glycosides were more deterrent than digitoxigenin-based ones, and the number and type of sugar substitutions can have profound effects on activity. Both similarities and contrasts were found in responses ofP. rapae andP. napi oleracea to these cardenolides. Cymarin was equally deterrent to bothPieris species at all concentrations tested. However, when compared withP. rapae, P. napi oleracea was less sensitive to most of the cardenolides.P. napi oleracea was insensitive to K-strophanthin- and oleandrin at 0.5 × 10–4 M, which were highly deterrent toP. rapae.  相似文献   

5.
Avoidance ofErysimum cheiranthoides for oviposition byPieris rapae has been attributed to the presence of water-soluble deterrents. The active material was extracted inton-butanol and isolated by a series of HPLC separations. TLC of the active fraction and visualization of individual constituents with Kedde's reagent indicated that cardenolides are responsible for deterring oviposition. UV spectra were also characteristic of cardenolides. Bioassays of selected known cardenolides revealed a general lack of activity, except for cymarin, which was as strongly deterrent as the most prominent cardenolide isolated in pure form fromE. cheiranthoides. The results suggest that cardenolides in this plant can explain its escape from cabbage butterflies, but specific structural features of the glycosides are necessary for oviposition-deterring activity.  相似文献   

6.
Avoidance of some crucifer species by the crucifer specialist,Pieris rapae, has been attributed to the presence of oviposition deterrents in these plants. Studies on one such unacceptable plant,Erysimum cheiranthoides, have resulted in the isolation ofn-butanol-soluble deterrents from the alcoholic extract of foliage. The active fraction contained three cardiac glycosides, which were isolated by reversed-phase HPLC and by open column chromatography on silica gel. Chemical and spectral evidence (UV, [1H]NMR, and FAB-MS) led to the characterization of these compounds as erysimoside (1), erychroside (2), and erycordin (3). Erysimoside and erychroside were strongly deterrent toPieris rapae, but erycordin was inactive. Both active compounds have the same aglycone, strophanthidin (5) and the inner sugar in both cases is a 2,6-dideoxy hexose to which the outer sugar is attached at position C-4. These structural features, which are absent in the inactive compound (3), may represent specific requirements for oviposition deterrent activity.  相似文献   

7.
GravidPieris rapae butterflies oviposit on many, but not all, crucifers. Rejection ofErysimum cheiranthoides andCapsella bursa-pastoris was initially explained by the presence of chemical deterrents in the plants. Analyses and bioassays of plant extracts indicated the absence of oviposition stimulants inC. bursa-pastoris, but similar chemical separation ofE. cheiranthoides extracts revealed the presence of stimulants as well as deterrents. Choice tests illustrate how acceptance or rejection of a plant by an insect may depend on the balance of positive and negative chemical stimuli within the plant.  相似文献   

8.
In their larval luminal midgut fluid,Trichoplusia ni (Lepidoptera: Noctuidae) andPieris rapae (Lepidoptera: Pieridae) contain endopeptidases as their primary proteases. Neither species has detectable exopeptidase activity. Studies using enzyme-specific substrates and inhibitors demonstrate that the endopeptidases are serine proteinases (both trypsinlike and chymotrypsinlike) with histidine at the active site. Optimal pH for the tryptic and chymotryptic activity is 8.5 and 8.0, respectively, forT. ni. and 8.0 and 9.0, respectively, forP. rapae. The efficiency of proteolytic digestion (as measured by the rate of in vitro digestion of a standard protein by the midgut luminal fluid) is positively correlated with the larval dietary protein requirement and is significantly influenced by the ratios of tryptic to chymotryptic activity present in the gut lumen of these two species of Lepidoptera.  相似文献   

9.
The wild cruciferErysimum cheiranthoides was found to contain extractable constituents that deterred feeding by larvae of the crucifer specialistPieris rapae when applied to cabbage leaf disks in both choice and nochoice bioassays. High-performance liquid chromatography was used to separate the extract into several fractions, two of which retained the feeding deterrent activity of the extract. UV-absorption spectra of the fractions suggested that one contained cardenolides similar or identical to those reported to deter oviposition byP. rapae onE. cheiranthoides. The other active fraction evidently contains a compound that deters larval feeding but not adult oviposition. The results suggest that the chemical defense ofE. cheiranthoides depends on two types of compounds acting on separate developmental stages of the insect.  相似文献   

10.
Rejection of nasturtium,Tropaeolum majus, by cabbage-reared larvae ofPieris rapae has been explained by the presence of feeding deterrents in the nastrutium foliage. Sensitivity to the deterrents develops as neonate larvae feed on cabbage. The most prominent deterrent compound, which is present in nasturtium at a concentration of 40 mg/100 g fresh leaves, was identified as chlorogenic acid. When neonate larvae were fed on a cabbage leaf treated with high concentrations of deterrent-containing extracts of nasturtium foliage, they remained insensitive to the deterrents, so they accepted nasturtium when transferred as second instars. When neonate larvae were reared on a cabbage leaf treated with 0.1 mg chlorogenic acid, ca. 35% of the second instars accepted nasturtium. Similar dietary exposure of neonates to the subunits of chlorogenic acid, caffeic acid and quinic, acid resulted in much less or no effect on the rejection behavior of second instars. The results suggest that the combined effects of specific chemical constituents of nasturtium can explain the rejection of this plant by larvae ofP. rapae, but if larvae are continuously exposed to these compounds immediately after hatching, they apparently become habituated to the feeding deterrents. The lack of activity of the subunits of chlorogenic acid suggests that specific structural features are necessary for a dietary constituent to cause such habituation or suppression of sensitivity development.  相似文献   

11.
Oviposition byPieris rapae butterflies was deterred by spraying the plant secondary compounds coumarin and rutin on cabbage plants in greenhouse choice tests. In no-choice tests ranging from 5 min to 24 hr, acceptance of rutin-treated plants for oviposition increased with trial duration. Both coumarin and rutin deterred oviposition primarily by affecting prealighting rather than postalighting behavior, indicating that deterrence was mediated by noncontact cues.  相似文献   

12.
Adult females of several lepidopteran species avoid oviposition near conspecific eggs. Laboratory and field studies indicate that visual factors as well as chemical host markers may be involved in egg avoidance behavior. The oviposition-deterring pheromones (ODP) of two pierids,P. brassicae andP. rapae have been studied in considerable detail. The ODPs are probably produced in the female accessory glands and contain volatile and nonvolatile components. They are perceived by nonspecialized antennal or tarsal receptors, respectively. The ODP ofP. brassicae affects oviposition ofP. rapae females and vice versa. ODPs show promise for insect control programs, but more information on oviposition behavior in the presence of ODP under field conditions is required.  相似文献   

13.
Pieris brassicae L. butterflies secrete miriamides onto their eggs. These avenanthramide alkaloids are strong oviposition deterrents when sprayed onto a cabbage leaf. However, these compounds could not be detected in cabbage leaves from which egg batches had been removed two days after deposition and that still showed oviposition deterrency. It was concluded that the miriamides were not directly responsible for the avoidance by females of occupied leaves while searching for an oviposition site. Evidence was obtained that cabbage leaves themselves produce oviposition deterrents in response to egg batches. Fractions containing potent oviposition deterrents could be isolated from surface extracts of leaves from which previously laid egg batches had been removed. The term host marking pheromone that was used previously is not applicable in this case.  相似文献   

14.
Field and laboratory ovipositional responses ofMonochamus alternatus Hope, respectively, to methanol and water extracts from pine inner bark were examined in comparison with those to pine inner bark, especially using a laboratory-built apparatus for the latter bioassay. Irrespective of the existence of volatiles from paraquat-induced lightwood, pine inner bark and its methanol and water extracts stimulated ovipositional response only in the presence of free moisture.  相似文献   

15.
To elucidate the identity of the volatile compounds that could be involved in the searching behavior of the parasitoidCotesia rubecula Marshall (Hymenoptera: Braconidae), the volatiles released by cabbage and frass of Lepidoptera feeding on cabbage were collected and analyzed using a gas chromatograph-mass spectrometer. The volatiles emitted by intact cabbage were -pinene, -pinene, myrcene, 1,8-cineole,n-hexyl acetate,cis-3-hexen-1-yl acetate, and dimethyl trisulfide. Mechanical damage on an intact plant induced the release of two more compounds,trans-2-hexenal and 1-methoxy-3-methylene-2-pentanone. Current feeding by larvae ofPieris rapae L. (Pieridae) induced the plant to release all the compounds released after mechanical damage and additionally 4-methyl-3-pentenal and allyl isothiocyanate. Current feeding by larvae ofPlutella xylostella L. (Plutellidae) induced the plant to release all the compounds present after mechanical damage and additionally allyl isothiocyanate. The volatiles emitted after feeding by the lepidopterans had ceased were the same as those emitted by cabbage damaged by mechanical means. The blend of volatiles emitted by frass was comprised of plant chemicals, mainly sulfur compounds. Frass ofP. rapae emitted allyl isothiocyanate, methyl isothiocyanate, methyl propyl sulfide, dimethyl trisulfide,S-methyl methane thiosulfinate, 4-methyl-3-pentenal,trans-2-hexenal, and 2,3-dihydro-4-methyl furan. Frass ofP. xylostella emitted only dimethyl trisulfide andS-methyl methane thiosulfinate. The blend of volatiles emitted by frass is herbivore-species specific.  相似文献   

16.
The role of airborne infochemicals in host selection by the parasitoidCotesia rubecula (Marshal) (Hymenoptera: Braconidae) was examined in a wind tunnel. To elucidate the role of volatile chemicals in attractingC. rubecula to cabbage infested by the host [Pieris rapae L. (Lepidoptera: Pieridae)], the potential sources of volatiles related toP. rapae infestation on cabbage were tested individually. The responses of females to nonhost plant species, bean and geranium, as well as to frass of a nonhost lepidopteran were also examined.C. rubecula was attracted to cabbage previously infested byP. rapae and to frass and regurgitate ofP. rapae. No attraction was observed to larvae ofP. rapae alone. Females were also attracted to mechanically damaged cabbage, cabbage previously infested byPlutella xylostella L. (Lepidoptera: Plutellidae) (a nonhost lepidopteran herbivore), and cabbage previously infested by snails (a nonhost, noninsect herbivore). Intact cabbage, bean, and geranium plants elicited no attraction. A low frequency of attraction was observed to mechanically damaged bean and geranium. Attraction was also observed to frass ofP. xylostella. Volatiles from cabbage related to damage, and volatiles from frass and regurgitate of the host seem to play an important role in guidingC. rubecula to plants infested by its host.  相似文献   

17.
Floral scent compounds of Ligustrum japonicum that affect the foraging behavior of Pieris rapae adults were examined by means of chemical analyses, electroantennogram (EAG) responses, and behavioral bioassays; the behavioral biossays consisted of two tests: reflex extension of proboscis (REP) in response to odor, and attraction to scented and unscented artificial flowers. More than 30 compounds, including 2-phenylethanol, benzyl alcohol, and methyl phenylacetate as the major components were identified from L. japonicum flowers. Of these, 22 compounds were tested for their effect on foraging behavior. Phenylacetaldehyde (PA), 2-phenylethanol (PE), and 6-methylhept-5-en-2-one (MHO) elicited the highest REP responses, and benzaldehyde (BA) and methyl phenylacetate (MPA) evoked intermediate REP responses. EAG responses were not necessarily correlated with REP activities; the three high-REP compounds gave only moderate EAG responses, whereas two other compounds (ethyl phenylacetate and 2-phenylethyl acetate) that released high EAG responses showed low REP activities. In two-choice behavioral bioassays, flower models scented with any one of these high-REP compounds attracted significantly more adults, while compounds with low REP activities exhibited weak or no appreciable attractiveness. This suggests that the REP responsiveness closely reflects the attractiveness of a compound and could be an effective measure in elucidating which chemical attractants are involved in flower-visiting. A synthetic blend of five floral chemicals (PA, PE, MHO, BA, and MPA) displayed an attractiveness that was comparable to that of the floral extract and was more effective in attractiveness than the compounds tested singly. Consequently, it is highly likely that the flower-visiting by P. rapae to L. japonicum is mediated largely by floral scent chemicals and that a synergistic effect of the five floral components would be most responsible for attraction of the butterfly to this flower. The present results also strongly suggest that specific floral volatiles may facilitate close-range flower location by P. rapae, could serve in part as a cue for recognizing food sources, and also be profoundly implicated in flower preference.  相似文献   

18.
The responses of the parasitoidCotesia rubecula to differently damaged cabbages were recorded during a series of choice tests. To determine if flyingC. rubecula can discriminate differences in the blend of volatiles emitted by cabbages damaged by different causes and how plant volatiles released from a distant source affect the searching behavior ofC. rubecula once searching on a plant, wasps were presented with a choice of plants located one behind the other and separated by a distance of 15 cm. The sources of damage were: cabbage damaged by the host (Pieris rapae), by a nonhost lepidopteran herbivore (Plutella xylostella), by a nonhost, noninsect herbivore (snail), and by mechanical means. The results showed that the site of first landing and the time spent searching on the leaves was influenced by the type of damage inflicted on plants. Wasps preferred to land on cabbages damaged by host and nonhost species of Lepidoptera over those damaged by snails and mechanical means. No preference was observed for first landing between cabbages damaged by the two species of Lepidoptera or between cabbages damaged by snails and mechanical means. Cabbage damaged byP. rapae was searched most intensively, followed by cabbage damaged byP. xylostella, cabbage damaged by snails, and cabbage damaged by mechanical means.C. rubecula differentiates between the volatile blends emitted by differently damaged cabbages, and it is attracted to volatiles related to recent lepidopteran damage. Wasps searched longer on freshly damaged than on leaves with older damage.  相似文献   

19.
Headspace volatiles were collected from undamaged foliage of carrot,Daucus carota, a host-plant species of the black swallowtail butterfly,Papilio polyxenes. The volatiles were fractionated over silica on an open column, and the fractions were tested in behavioral assays withP. polyxenes females in laboratory experiments. The polar fractions, as well as the total mixture of volatiles, increased the landing frequency and the number of eggs laid on model plants with leaves bearing contact-oviposition stimulants. The nonpolar fraction, containing the most abundant compounds in carrot odor, was not stimulatory. Gas Chromatographic (GC) separation of the fractions was coupled with electroantennogram (EAG) recordings to identify the compounds perceived byP. polyxenes females. The EAG activity corresponded to the behavioral activity of the fractions. None of the nonpolar compounds, identified as various monoterpenes, evoked a major EAG response, but several constituents of the polar fractions elicited high EAG responses. Sabinene hydrate (both stereoisomers), 4-terpineol, bomyl acetate, and (Z)-3-hexenyl acetate were identified by GC-MS as active compounds.  相似文献   

20.
In observation-cage experiments some new contact kairomones for the egg parasiteTrichogramma evanescens Westwood are demonstrated.T. evanescens females search significantly longer on cabbage leaves treated with the wing scales of two hosts,Pieris brassicae L. andP. rapae L. Further, egg washes ofP. brassicae containing an oviposition deterrent pheromone for the butterflies, were found to have a contact-kairomonal effect on the parasite.T. evanescens females search significantly longer on cabbage leaves sprayed with a methanol or water wash ofP. brassicae eggs than on leaves treated with the solvent only.Hymenoptera: Trichogrammatidae.Lepidoptera: Pieridae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号