首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 877 毫秒
1.
硅烷偶联剂改性云母粉在微孔发泡PP中的应用   总被引:1,自引:1,他引:1  
通过硅烷偶联剂改性的云母粉,以不同含量加入聚丙烯(PP)中,制备微发泡PP/云母粉复合材料;通过相容性和分散性分析了改性与未改性云母粉微发泡PP复合材料发泡行为和力学行为的影响规律。结果表明:改性云母粉的微发泡PP复合材料泡孔直径明显减小,泡孔密度增大;抗拉强度和冲击强度都得到提高。  相似文献   

2.
竹粉对微发泡聚丙烯发泡行为的影响   总被引:1,自引:1,他引:0  
通过改性的竹粉,以不同含量加入到聚丙烯中,在二次开模条件下制备微发泡PP/竹粉复合材料,分析了不同含量的竹粉对微发泡复合材料发泡行为的影响规律。结果表明:随竹粉含量的增加,泡孔平均直径逐渐减小,泡孔密度逐渐增加,竹粉质量分数为7%时泡孔平均直径最小为22.3μm,泡孔密度达到2.92×107个/cm3,具有理想的发泡效果。  相似文献   

3.
以不同含量的改性的碱式硫酸镁(MgSO4)晶须加入到聚丙烯(PP)中,在二次开模条件下制备微发泡PP/硫酸镁晶须复合材料,分析了不同含量的硫酸镁晶须对微发泡复合材料发泡行为的影响规律。结果表明,随晶须含量的增加,泡孔平均直径逐渐减小,泡孔密度逐渐增加,晶须质量分数为25%时泡孔直径为26.79μm,泡孔密度达到2.33×105个/cm3,具有理想的发泡效果。  相似文献   

4.
采用注塑成型方法,在二次开模条件下制备微发泡聚丙烯(PP)/竹粉复合材料,分析了不同含量的竹粉对微发泡PP复合材料力学性能和发泡行为的影响。结果表明:随着竹粉用量的增加,泡孔平均直径逐渐减小,泡孔密度逐渐增加。竹粉用量为30%时,泡孔直径最小,为23.4μm,泡孔密度达到10.4×106个/cm3,具有理想的发泡效果。竹粉用量在20%时,发泡材料的冲击强度和纯PP基本相同,在性能不降低情况下,节约了原材料成本。  相似文献   

5.
将云母粉加入到聚丙烯(PP)中,在二次开模条件下制备微孔发泡PP/云母粉复合材料,分析了不同含量的云母粉对微孔发泡复合材料发泡行为及力学性能的影响。结果表明,当云母粉质量分数为6%时微孔发泡复合材料的泡孔尺寸最小,泡孔密度最大;随着云母粉加入量的增大微孔发泡复合材料的缺口冲击强度略有降低,拉伸强度基本保持不变。  相似文献   

6.
选取粒径约为20μm的针状MgSO4晶须、片层状云母粉和粒状SiO2,以5%的用量加入到聚丙烯(PP)中,在二次开模条件下制备微发泡PP复合材料;通过异相成核理论和粉体分布的特性,分析了无机粉体形状对微发泡PP复合材料发泡行为的影响。结果表明,片层状云母粉具有良好的相容性、比表面特性和异相成核作用,发泡效果理想;泡孔直径达到22.10μm左右、泡孔密度为6.92×108个/cm3;聚烯烃类材料发泡的成核剂中,以片层状的云母粉较为理想。  相似文献   

7.
碳酸钙晶须对微发泡聚丙烯材料发泡行为的影响   总被引:2,自引:2,他引:0  
通过把改性碳酸钙晶须以不同含量加入到聚丙烯中,在二次开模条件下制备微发泡PP/碳酸钙晶须复合材料,分析不同含量的碳酸钙晶须对微发泡复合材料发泡行为的影响.结果表明:当碳酸钙晶须质量含量为10%时,微发泡复合材料的泡孔分散度为6.25、泡孔直径25.27μm左右、泡孔密度为4.25 X105个/cm3,具有理想的发泡效果.  相似文献   

8.
将改性的纳米二氧化(硅SiO2)以不同含量加入到聚丙(烯PP)中,在二次开模条件下制备微发泡PP/纳米SiO2复合材料,分析了纳米SiO2含量对微发泡复合材料发泡行为的影响。结果表明:随着纳米SiO2含量的增加,复合材料的平均泡孔直径减小,泡孔密度增加,当纳米SiO2含量为4%时,复合材料的泡孔直径为16.3μm泡,孔密度达1.41×109个/cm3具,有理想的发泡效果。  相似文献   

9.
用正交试验研究了注射温度、注射压力、注射速度和冷却时间对化学发泡法制备聚丙烯(PP)/云母粉发泡材料的泡孔平均直径和泡孔密度的影响.结果表明,在PP中添加云母粉后.注射压力对发泡PP/云母粉材料的结构参数影响最大,其次为注射温度;较理想的工艺参数为注射温度170℃、注射压力50 MPa,注射速度95%、冷却时间30 s.  相似文献   

10.
采用欠注成型工艺制备微发泡聚丙烯(PP)/纳米二氧化硅复合材料,通过建立物理模型分析外加压力场对PP复合材料发泡行为的影响规律。结果表明:随着外加压力的增大,PP复合材料的泡孔直径和密度都呈减小趋势;当外加压力为0.7 MPa时,泡孔直径为38.72μm,泡孔密度达到3.66×106个/cm3,分散度为17.85μm,材料发泡效果较理想。  相似文献   

11.
影响淀粉发泡的因素   总被引:2,自引:0,他引:2  
淀粉基泡沫塑料是一种重要的可生物降解材料,淀粉在发泡过程中受到很多因素的影响。综述了挤出发泡和烘焙发泡中发泡条件、淀粉种类、直链含量、直链/类脂化合物、化学添加剂等对淀粉发泡膨胀的影响。  相似文献   

12.
聚丙烯挤出发泡成型技术   总被引:2,自引:0,他引:2  
简述了聚丙烯(PP)的发泡机理、发泡方法和发泡剂种类,并介绍了其物理、化学发泡工艺及单螺杆、双螺杆挤出发泡工艺。  相似文献   

13.
采用超临界流体间歇式微孔发泡技术制备了超轻热塑性聚氨酯弹性体(TPU)颗粒,利用扫描电子显微镜等研究了以水蒸气、热空气、水、甘油4种不同发泡介质对发泡行为的影响。结果表明,高温水蒸气发泡、烘箱发泡、油浴发泡、水浴发泡的最佳发泡时间分别为50、180、30、15 s左右;最佳发泡温度分别为120、115、75、80 ℃左右;从发泡颗粒的外观、颗粒及泡孔结构的均匀性上来看,高温水蒸气发泡优于其他几种方式。  相似文献   

14.
用天然橡胶制备彩色发泡胶球,研究了发泡剂及发泡助剂、硫化体系、填充体系、混炼和硫化工艺以及发泡工艺等对发泡胶球品质的影响。结果表明,发泡剂选用二亚硝基五亚甲基四胺与小苏打和尿素脂BK并用体系可使胶球的泡孔细密均匀,气味很小;硫化体系采用临界温度较低的促进剂TT、CZ及M与硫黄并用能使硫化程度与发泡速率很好地匹配;选择轻质碳酸钙和滑石粉作为填充体系、使用门尼黏度为20~40的胶料及采用二段硫化工艺时所制备发泡胶球的泡孔细密、结构理想,发泡倍率与国外胶乳发泡制品相当。  相似文献   

15.
本实验主要研究密度低于0.8g/cm3的泡沫修井液体系。该体系用SDS(十二烷基硫酸钠)与QHP的复配物(最佳配比是4∶1,最佳加量1.5%)作为起泡剂,用0.08%的十二醇、1.2%的CM C和HEC混合物(比例为3∶2)以及0.2%的明胶作为稳泡剂。制备出的泡沫稳定性好,具有好的抗盐性,抗油性,抗水性,可用作低压油井修井液。  相似文献   

16.
采用物理发泡剂和化学发泡剂的组合发泡剂对聚苯乙烯(PS)在串联挤出发泡机组中进行连续挤出发泡,探讨了不同含量发泡剂和不同发泡温度对PS发泡行为的影响。通过真密度测定仪和扫描电子显微镜对发泡制品的密度、发泡倍率和泡孔形态进行测试。研究结果表明,采用组合复合发泡剂后,PS发泡制品的泡孔密度明显提高,发泡倍率增加,泡体结构优于单独使用物理发泡剂或化学发泡剂的发泡制品。在发泡温度为120℃,CO2注气量为5 mL/min,化学发泡剂用量为3份,SiO2用量为1份时,样品具有最佳泡孔形态,发泡倍率为18.42,泡孔密度为3.53×106个/cm3。  相似文献   

17.
综述了酚醛泡沫成型技术的国内外研究进展,重点介绍了模压发泡法、浇注发泡法、喷涂法等几种主要酚醛泡沫成型方法,并对酚醛泡沫成型的发展趋势及应用前景进行了展望。  相似文献   

18.
采用化学发泡法,用热塑性聚氨酯(PUR–T)及偶氮二甲酰胺(AC)/Na HCO3,AC/尿素及4,4’–氧代双苯磺酰肼(OBSH)/Na HCO3,OBSH/尿素复合发泡剂和交联剂甲苯二异氰酸酯(TDI)制备出交联型PUR–T发泡材料,通过万能电子试验机、发泡倍数和扫描电子显微镜分析比较了不同复合发泡剂的发泡效果,探讨了AC/Na HCO3用量配比和TDI用量对PUR–T发泡材料力学性能、发泡倍数和泡孔结构的影响。结果表明,AC/Na HCO3复合发泡剂对PUR–T的发泡效果最佳,泡孔均匀细密且结构最为稳定;当AC和Na HCO3用量均为0.2份、TDI用量为1.2份时,发泡剂的发泡速率和PUR–T的交联速率最匹配,发泡倍数为1.421倍,发泡效果最佳,制得的PUR–T发泡材料的力学性能最好,其拉伸强度达11.23 MPa,断裂伸长率达311%。  相似文献   

19.
明胶具有发泡性能,该性能在食品、医药、洗涤、化妆品等行业具有很好的潜在应用价值。明胶浓度对其体系的发泡性能和发泡稳定性产生的影响,将直接影响到其产品的质量和性能。因此,本文采用搅拌法,在60℃水浴条件下,采用100mL明胶溶液,研究了明胶溶液浓度对其发泡性能和泡沫稳定性的影响。实验结果表明:在相同的温度和转速条件下,随着明胶溶液浓度的增加,其发泡量逐渐减少,而泡沫稳定性则越来越好。A型明胶溶液浓度为1%时发泡量最大,最大值为71mL;在浓度为9%时泡沫半衰期为86min,表现出较好的泡沫稳定性。B型明胶溶液浓度为1%时发泡量最大值为52mL;溶液浓度为9%时泡沫半衰期为3min。A型明胶和B型明胶两者相比,A型明胶具有更好的发泡性能及泡沫稳定性。  相似文献   

20.
对聚合物微孔发泡基本过程、机理、聚合物微孔发泡的实施等进行了介绍,同时指出通过嵌段共聚物为载体可以制备纳米孔发泡材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号