首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanical properties of standard decorticated and hand isolated flax bast fibres were determined in tension as well as in compression. The tensile strength of technical fibre bundles was found to depend strongly on the clamping length. The tensile strength of elementary flax fibres was found to range between 1500 MPa and 1800 MPa, depending on the isolation procedure. The compressive strength of elementary flax fibres as measured with a loop test lies around 1200 MPa. However, the compressive strength can be lowered severely by the decortication process. The standard decortication process induces kink bands in the fibres. These kink bands are found to contain cracks bridged by microfibrils. The failure behaviour of elementary flax fibres under compression can be described as similar to the failure behaviour of a stranded wire.  相似文献   

2.
Flax fibres are finding non-traditional applications as reinforcement of composite materials. The mechanical properties of fibres are affected by the natural variability in plant as well as the damage accumulated during processing, and thus have considerable variability that necessitates statistical treatment of fibre characteristics. The strength distribution of elementary flax fibres has been determined at several fibre lengths by standard tensile tests, and the amount of kink bands in the fibres evaluated by optical microscopy. Strength distribution function, based on the assumption that the presence of kink bands limits fibre strength, is derived and found to provide reasonable agreement with test results.  相似文献   

3.
Textile-reinforced composites have become increasingly attractive as protection materials for various applications, including sports. In such applications it is crucial to maintain both strong adhesion at fibre–matrix interface and high interfacial fracture toughness, which influence mechanical performance of composites as well as their energy-absorption capacity. Surface treatment of reinforcing fibres has been widely used to achieve satisfactory fibre–matrix adhesion. However, most studies till date focused on the overall composite performance rather than on the interface properties of a single fibre/epoxy system. In this study, carbon fibres were treated by mixed acids for different durations, and resulting adhesion strength at the interface between them and epoxy resin as well as their tensile strength were measured in a microbond and microtensile tests, respectively. The interfacial fracture toughness was also analysed. The results show that after an optimum 15–30 min surface treatment, both interfacial shear strength and fracture toughness of the interface were improved alongside with an increased tensile strength of single fibre. However, a prolonged surface treatment resulted in a reduction of both fibre tensile strength and fracture toughness of the interface due to induced surface damage.  相似文献   

4.
High volume fraction hemp and flax fibre composites were manufactured using low viscosity epoxy and phenolic resins. Using 80% volume fraction of flax fibres in epoxy resin, composites with a mean stiffness of 26 GPa and a mean strength of 378 MPa were produced. By reducing processing damage of the plant fibres mechanical properties could be increased by 40%. Strips of retted fibre tissue were found to be just as effective for reinforcement as fibre bundles and individual fibres. Phenolic resin and decorticated flax fibres produced very poor composites. Using 40% volume fraction of fibres the mean stiffness was 3.7 GPa and the mean strength was 27 MPa. Two fibre pre-treatments were devised to improve adhesion with resins. The first, 6 M urea was used only in natural fibre-epoxy composites where it increased the stiffness but not the strength. The second pre-treatment was a 50% PVA solution, which was cured prior to the addition of space filling resin. The PVA treatment improved the stiffness and strength of both natural fibre-epoxy composites and natural fibre-phenolic composites.  相似文献   

5.
A new polyimide has been synthesized from 3,3,4,4-biphenyltetracarboxylic dianhydride (BPDA) and 2,2-dimethyl-4,4-diaminobiphenyl (DMB). A high-strength, high-modulus, high-temperature fibre has been developed from this polyimide via a dry-jet wet spinning method. The tensile strength of BPDA-DMB fibres is 3.3 GPa and the tensile modulus is around 130 GPa. The compressive strength of the fibres has been investigated through a tensile recoil test (TRT), while the fibre morphology after compression has been studied via polarized light microscopy (PLM) and scanning electron microscopy (SEM). From the TRT measurements, we have observed that the compressive strength of this fibre is 665 (±5) MPa, which is higher than those of other aromatic polymer fibres. The effect of fibre diameter on the compressive strength of BPDA-DMB fibres is not substantial. The critical compressive strain for this fibre at which the kink bands start appearing under the observation of PLM is at 0.51–0.54%. Subglass relaxation processes have been observed and the measure of an apparent relaxation strength may serve as one of the factors which significantly affect the compressive strength of the fibres. Tensile tests of pre-compressed fibres reveal a continuous loss in tensile strength (up to 30%) with increasing the compressive strain (up to 2.6%). PLM and SEM observations show that during the compression BPDA-DMB fibres form regularly-spaced kink bands at ±60 ° (±2 °) with respect to the fibre axis. The kink band density initially increases with the compressive strain, and reaches a maximum at around 1.1%. Further increase of the compressive strain decreases this density due to the merge of the neighbouring bands. The size of kink bands also correspondingly increases within this compressive strain region. The morphological observation via SEM implies the existence of a skin-core structure and microfibrillar texture which are common features in polymer fibres.  相似文献   

6.
This study investigates the influence of the physical structure of flax fibres on the mechanical properties of polypropylene (PP) composites. Due to their composite-like structure, flax fibres have relatively weak lateral bonds which are in particular present in flax fibres that are often used in natural fibre mat reinforced thermoplastics (NMT). These weak bonds can be partly removed by combing the fibres. In order to study the influence of the physical structure of flax fibres on NMT tensile and flexural properties, uncombed and combed flax fibre reinforced PP composites were manufactured via a wet laid process. The influence of improved fibre-matrix adhesion was studied using maleic-anhydride grafted PP. Results indicated that the flax physical structure has a significant effect on flax-PP composite properties and that the flax fibre reinforced PP properties are similar to values predicted with existing micromechanical models. The tensile modulus of flax-PP composites can fairly compete with commercial glass mat reinforced thermoplastic (GMT) modulus, the strength, however, both tensile and flexural, can not. In order to rise the strength of flax fibre reinforced PP composites to the level of GMT strength, the flax fibres have to be further isolated to elementary flax fibres.  相似文献   

7.
The effect of volume fraction and tensile strength of fibres, temperature and stress concentrators on the compression strength and fracture mode of unidirectional CFRP was studied. The cause of kinking is different for composites reinforced by low-(<3 GPa) and high-strength fibres. If fibre strength is high, the kink is initiated by composite splitting followed by fibre bend fracture in the tip of the split. In the case of low-strength fibres, kinking is initiated by compressive fracture of the fibres. The effect of stress concentrators on the CFRP compressive strength is described by linear fracture mechanics. In the presence of defects, fracture is a result of the emergence of splits near a hole. As the critical stress of splitting growth initiation reduces in proportion to the square root of the defect size, the Griffith criterion describes the composite compressive fracture. At elevated temperature, failure is caused by fibre buckling. The fracture band in this case is oriented perpendicular to the fibre direction. Carbon fibre compressive strength may be measured by the loop method. Bending a strand of carbon fibres glued to the elastic beam gives a fibre-controlled upper limit of the composite compressive strength.  相似文献   

8.
马豪  李岩  王迪  陆超 《材料工程》2015,(10):14-19
研究热压成型过程中,不同固化温度对亚麻纤维及其增强复合材料力学性能的影响。结果表明:亚麻纤维在120,140℃和180℃分别处理2h后单纤维拉伸性能发生不同程度的下降。环氧树脂E-51在120,140℃和180℃下固化2h后拉伸性能未发生明显变化。基于环氧树脂的单向亚麻纱线增强复合材料分别在120℃和140℃固化成型时,拉伸强度和冲击强度变化不大。但当固化温度达到180℃时,由于亚麻纤维在高温环境下损伤较为严重,其增强复合材料的拉伸强度和冲击强度均发生明显的下降。然而复合材料的拉伸模量随着成型温度的升高有一定幅度的提升。  相似文献   

9.
While high-performance organic fibres such as poly (para phenylene benzobisthiazole) and Kevlar possess excellent mechanical properties under axial tension, their strength under compression is generally poor. This study focuses on a polymer infiltration approach to modify the mechanical properties of the Kevlar 49 fibre in tension as well as compression, in which various polymeric resins are infiltrated in an opened fibrillar network of Kevlar single filaments. Opening was achieved using concentrated sulfuric acid, which resulted in a strength loss at high acid concentrations. However, compared to the acid-treated fibre, both the tensile strength and strain-to-failure of the fibres were found to increase after infiltration with epoxy resins and bismaleimide polymers. Polymer infiltration also resulted in a significant improvement in the compressive strength of the Kevlar fibre, with the bismaleimide performing better than the epoxy resins. Plasma modification using ammonia was also used to enhance interfibrillar adhesion by incorporating reactive amine groups on the fibril surface  相似文献   

10.
The tensile strength of epoxy resin reinforced with random-planar orientation of short carbon and glass fibres increased as the length of the reinforcing fibres increased, and the increase in tensile strength remained almost unchanged after the fibre length reached a certain level. The tensile strength of composites at any fibre length could be estimated by taking the strain rate and temperature dependence of both the yield shear strength at the fibre-matrix interphase and the mean critical fibre length into consideration. The tensile strength of the hybrid composite could be estimated by the additive rule of hybrid mixtures, using the tensile strength of both composites.  相似文献   

11.
The mechanical properties such as tensile, compressive, flexural, impact strength and water absorption of the alkali treated continuous Agave fibre reinforced epoxy composite (TCEC) and untreated continuous Agave fibre reinforced epoxy composite (UTCEC) were analysed. A comparison of the surfaces of TCEC and UTCEC composites was carried out by dynamic mechanical analysis (DMA), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermomechanical properties of the composite reinforced with sodium hydroxide (NaOH) treated Agave fibres were considerably good as the shrinkage of the fibre during alkali treatment had facilitated more points of fibre resin interface. The SEM micrograph and FTIR spectra of the impact fracture surfaces of TCEC clearly demonstrate the better interfacial adhesion between fibre and the matrix. In both analyses the TCEC gave good performance than UTCEC and, thus, there is a scope for its application in light weight manufacture in future.  相似文献   

12.
The effect of multi-walled carbon nanotube (MWCNT) addition on mechanical properties of epoxy resin was investigated to obtain the tensile strength, compressive strength and Young’s modulus from load versus displacement graphs. The result shows that the tensile strength, compressive strength and Young’s modulus of epoxy resin were increased with the addition of MWCNT fillers. The significant improvements in tensile strength, compressive strength and Young’s modulus were obtained due to the excellent dispersion of MWCNT fillers in the epoxy resin. The dispersion of MWCNT fillers in epoxy resin was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis.Also, Halpin–Tsai model was modified by considering the average diameter of internal/external of multi-walled nanotube and orientation factor (α) to calculate the Young’s modulus of multi-walled carbon nanotubes (MWCNTs)/epoxy resin composite. There was a good correlation between the experimentally obtained Young’s modulus and modified Halpin–Tsai model.  相似文献   

13.
The tensile strength of epoxy resin reinforced with a random planar orientation of short carbon and glass fibres increased as the strain rate increased, and the increase in tensile strength became slightly remarkable with increasing temperature. The strain rate-temperature superposition was held for each composite. The strain rate and temperature dependence of tensile strength of composites could be estimated based on the dependence of the mechanical properties of the matrix resin, the interfacial yield shear strength and the critical fibre length. The strain rate and temperature dependence of the tensile strength of the hybrid composite could be estimated by the additive rule of hybrid mixtures, using the strain rate and temperature dependence of the tensile strength of both composites. The experimental values at a higher rate were lower than the calculated values. It was hypothesized that this may have been caused by the ineffective fibres formed during preparation of the specimen.  相似文献   

14.
Hybrid materials of any kind are the keynote for today’s demands. This paper deals with one of such hybrid composite made of natural fibres namely, banana and flax fibres. The structural build-up is such that one layer of banana fibre is sandwiched between two layers of flax fibres by hand layup method with a volume fraction of 40% using Epoxy resin and HY951 hardener. Glass fibre reinforcement polymer (GFRP) is used for lamination on both sides. This lamination also increases the overall mechanical properties along with better surface properties. The properties of this hybrid composite are determined by testing its tensile, impact, and flexural loads using a Universal testing machine. Thermal properties are analysed and hybrid composites of flax and banana with GFRP have better thermal stability and flame resistance over flax, banana with GFRP single fibre hybrid composites. Morphological analysis is done using Scanning Electron Microscope (SEM). The result of test shows that hybrid composite has far better properties than single fibre glass reinforced composite under impact and flexural loads. However it is found that the hybrid composite have better strength as compared to single fibre composites.  相似文献   

15.
Water diffusivity was measured through 12 wet–dry cycles, for epoxy resin reinforced with plain-weave flax fabric. Electron microscopy revealed micro-cracks that provided routes for water uptake. Water damage was characterised by the volume of pores, expressed as percent of the total volume of the composite. Water diffusivity doubled for every increase of 2.3% in the volume of pores, until a plateau was reached after several cycles, when water diffusivity was 10 times as great as on first immersion. The amount of water absorbed by the flax–epoxy composite was an order of magnitude larger than that reported for unsaturated polyester resin reinforced by plain-woven E-glass fabric, yet the extent of water damage and associated changes in diffusivity were similar. Results were consistent with a damage mechanism in which both flax fibres and matrix become swollen when wet, but the fibres shrink faster than the matrix when dried.  相似文献   

16.
Fibre size distribution and the way how fibres are breaking during compounding with polypropylene were analysed. Two types of cellulose-based fibres were used: natural flax and man-made (regenerated) cellulose, Tencel. No significant influence of Tencel initial fibre size on its final size after processing was observed. However, the fibre type and the presence of defects have a stronger effect on the rupture. The value of the average final length of flax fibres was found to be similar to the distance between kink bands.In order to understand fibre rupture mechanisms, they were observed using a rheo-optical system which enabled visualization of fibre break-up. All fibres studied broke by fatigue after an accumulation of strain, contrarily to what is known for glass fibres. Flax fibres broke around the kink bands while Tencel® broke after numerous bending.  相似文献   

17.
《Composites Part A》2007,38(10):2109-2115
Leaf fibres from Phormium tenax (harakeke, New Zealand flax) were pulped at 170 °C with NaOH and anthraquinone. The pulp was wet laid to form mats, which were used to reinforce epoxy composites. The flexural modulus was almost as high as that measured for epoxy reinforced with glass chopped strand mat at the same weight fraction. The flexural strength was two-thirds that of the glass-reinforced composite. Failure was abrupt. SEM images showed torn fragments of fibre cell walls protruding from the fracture surface, indicating strong interfacial bonding. Good mechanical performance was attributed to the rarity of kink bands in the individual fibre cells, along with wrinkled cell-wall surfaces that enhanced the area of the fibre–matrix interface.  相似文献   

18.
硅烷偶联剂对电子束固化碳纤维复合材料的增效研究   总被引:1,自引:0,他引:1  
根据碳纤维表面的特点及其复合材料中树脂基体进行电子束固化的机理,对碳纤维表面进行预氧化以提高碳纤维表面含氧官能团的含量,利用偶联剂的化学架桥作用对电子束固化复合材料界面进行了增效研究。采用X射线光电子能谱(XPS)对处理后碳纤维表面化学成分进行了分析,并采用层间剪切强度对电子束固化复合材料界面粘合性能进行了评价。结果表明,碳纤维表面的含氮官能团使电子束固化复合材料中碳纤维与环氧树脂基体之间的粘合强度减弱,偶联剂与预氧化碳纤维表面进行了强相互作用,使电子束固化复合材料层间剪切强度得到提高。  相似文献   

19.
为提高玻纤增强环氧树脂复合材料的力学性能,采用静电植绒法将多壁碳纳米管(MWCNTs)附着在玻纤织物表面,得到改性的玻纤织物。利用一种低黏度的环氧树脂和所制得的改性织物,采用真空辅助成型工艺(VARI)制备了MWCNTs改性格玻纤织物/环氧树脂复合材料层合板,表征了层合板的力学性能。对进行力学实验后的MWCNTs改性玻纤织物/环氧树脂复合材料试样断口进行了SEM和OPM观察。结果显示:与未添加MWCNTs的玻纤织物/环氧树脂复合材料层合板相比,添加了MWCNTs的层合板的拉伸强度降低了10.24%,弯曲强度降低了13.90%,压缩强度降低了17.33%,拉伸模量和弯曲模量分别提高了19.38%和16.04%,压缩模量提高了13%;MWCNTs与玻纤织物之间的结合较弱,在拉伸作用下,存在明显的脱粘和分层;将改性玻纤织物在200℃下热压处理2h后,制备的MWCNTs改性玻纤织物/环氧树脂复合材料层合板的力学性能均有所提高,热压处理后树脂与玻纤织物之间的界面结合得到改善。  相似文献   

20.
The microstructure of flax fibres can be considered as a laminate with layers reinforced by cellulose fibrils. During a single fibre tensile test the S2 layer is subjected to shear. At room temperature, natural fibres contain water absorbed in the cell-walls. This paper examines the influence of this water at two scales: on the tensile behaviour of the flax fibres and on unidirectional plies of flax reinforced epoxy. Drying (24 h at 105 °C) is shown to reduce both failure stress and failure strain significantly. Analysis of normal stresses at the accomodation threshold provides an estimation of the shear strength of secondary cell walls as 45 MPa for fibres containing 6.4% by weight of water and only 9 MPa for dried fibres. Results from tensile tests on unidirectional flax/epoxy composites, reinforced by as-received and dried fibres, confirm the influence of drying on strength properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号