首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
韩立强  王祁 《光电工程》2011,38(5):99-102,113
采用光纤部件的自由空间光通信系统需要把接收到的光束耦合进单模光纤中,然而由于大气湍流的影响,使光纤耦合效率下降.本文把基于大气湍流参数的单模光纤耦合效率表达式推广到斜程传输情景,仿真了耦合效率与湍流强度及传输距离和天顶角之间的关系.为了补偿湍流效应,提高光纤耦合效率,本文提出了用一种新颖的无模型盲优化波前校正技术,用随...  相似文献   

2.
Chen C  Yang H  Wang H  Tong S  Lou Y 《Applied optics》2011,50(3):307-312
The efficiency of coupling a plane wave into a single-mode fiber can be reduced by both the aperture obstruction of receivers and the turbulence-induced degradation of optical coherence. Using the Gaussian approximation to the mutual coherence function of the incident optical field, we derived an analytical solution for the fiber-coupling efficiency when a plane wave, propagating through atmospheric turbulence, is received by an annular-aperture receiver and coupled into a single-mode fiber. It is a function of the coupling geometry, the aperture-radius-to-coherence-radius ratio (ARCRR), and the aperture-obstruction parameter. It is found by the numerical optimization method that the optimal coupling geometry depends on both the ARCRR and the aperture-obstruction parameter. The results obtained are useful for analyzing and designing a fiber-coupling system influenced by atmospheric turbulence.  相似文献   

3.
We analyze the potential efficiency of laser beam projection onto a remote object in atmosphere with incoherent and coherent phase-locked conformal-beam director systems composed of an adaptive array of fiber collimators. Adaptive optics compensation of turbulence-induced phase aberrations in these systems is performed at each fiber collimator. Our analysis is based on a derived expression for the atmospheric-averaged value of the mean square residual phase error as well as direct numerical simulations. Operation of both conformal-beam projection systems is compared for various adaptive system configurations characterized by the number of fiber collimators, the adaptive compensation resolution, and atmospheric turbulence conditions.  相似文献   

4.
耿超  杨燕  李枫  黄冠  李新阳 《光电工程》2018,45(3):170692-1-170692-13

近年来,以激光大气传输为应用背景的光束相干合成技术被广泛研究,而关于该项技术在空间光通信中的应用研究却不多。事实上,基于光束相干合成的多孔径接收天线结构可有效缓解大气湍流影响,提高空间激光通信系统的性能。本论文简要介绍了中国科学院自适应光学重点实验室面向激光大气传输应用的激光组束传输与湍流校正技术研究近况;重点介绍关于多孔径接收空间光通信系统中的光纤相干合成研究进展,主要包括基于3 dB光纤耦合器的相干合成和基于光纤偏振合束器的相干偏振合成两种方法,在空间光通信系统中具有极大的潜在应用。

  相似文献   

5.
Atmospheric optical communication with a Gaussian Schell beam   总被引:7,自引:0,他引:7  
We consider a wireless optical communication link in which the laser source is a Gaussian Schell beam. The effects of atmospheric turbulence strength and degree of source spatial coherence on aperture averaging and average bit error rate are examined. To accomplish this, we have derived analytic expressions for the spatial covariance of irradiance fluctuations and log-intensity variance for a Gaussian beam of any degree of coherence in the weak fluctuation regime. When spatial coherence of the transmitted source beam is reduced, intensity fluctuations (scintillations) decrease, leading to a significant reduction in the bit error rate of the optical communication link. We have also identified an enhanced aperture-averaging effect that occurs in tightly focused coherent Gaussian beams and in collimated and slightly divergent partially coherent beams. The expressions derived provide a useful design tool for selecting the optimal transmitter beam size, receiver aperture size, beam spatial coherence, transmitter focusing, etc., for the anticipated atmospheric channel conditions.  相似文献   

6.
Belmonte A  Rye BJ 《Applied optics》2000,39(15):2401-2411
Simulations of beam propagation in three-dimensional random media were used to study the effects of atmospheric refractive turbulence on coherent lidar performance. By use of the two-beam model, the lidar return is expressed in terms of the overlap integral of the transmitter and the virtual (backpropagated) local oscillator beams at the target, reducing the problem to one of computing irradiance along the two propagation paths. This approach provides the tools for analyzing laser radar with general refractive turbulence conditions, beam truncation at the antenna aperture, beam-angle misalignment, and arbitrary transmitter and receiver configurations. Simplifying assumptions used in analytical studies, were tested and treated as benchmarks for determining the accuracy of the simulations. The simulation permitted characterization of the effect on lidar performance of the analytically intractable return variance that results from turbulent fluctuations as well as of the heterodyne optical power and system-antenna efficiency.  相似文献   

7.
Piatrou P  Roggemann M 《Applied optics》2007,46(27):6831-6842
We apply a target-in-the-loop strategy to the case of adaptive optics beam control in the presence of strong atmospheric turbulence for air-to-ground directed energy laser applications. Using numerical simulations we show that in the absence of a cooperative beacon to probe the atmosphere it is possible to extract information suitable for effective beam control from images of the speckled and strongly turbulence degraded intensity distribution of the laser energy at the target. We use a closed-loop, single-deformable-mirror adaptive optics system driven by a target-in-the-loop stochastic parallel gradient descent optimization algorithm minimizing a mean-radius performance metric defined on the image of the laser beam intensity distribution formed at the receiver. We show that a relatively low order 25-channel zonal adaptive optical beam control system controlled in this way is capable of achieving a high degree of turbulence compensation with respect to energy concentration if the tilt can be corrected separately.  相似文献   

8.
The detection and processing of laser communication signals are affected by the fading induced onto these signals by atmospheric turbulence. One method of reducing this fading is to use an array of detectors in which each of the detector outputs are added together coherently. We present experimental verification and theory of a 1.06 mum eight-element coherent receiver used to mitigate the effects of fading over a 1-km outdoor range. The carrier-to-noise ratio (CNR) was measured on a single channel and was then compared with the CNR obtained from the coherent sum of the eight channels. The increase of the mean CNR for the coherent sum as compared with a single aperture was observed proportional to the number of the apertures under different conditions of atmospheric turbulence. The measured mean CNR gain fitted the theoretical prediction well when the laser intensity fluctuations followed the gamma distribution.  相似文献   

9.
We present an analytical framework for the performance evaluation of laser satellite uplinks over the major probabilistic impairments, i.e., atmospheric turbulence and beam wander. Specifically, we consider a ground-station-to-space laser uplink with a Gaussian beam wave model, and we focus on the particular regime assuming untracked beams where beam wandering takes place. In that regime, the modulated gamma-gamma distribution has been proposed as an effective irradiance model to characterize the combined effect of turbulence and beam wander. First we provide a closed-form expression of the probability density function and deduce the fundamental statistics of the new model. Then we evaluate the performance of the laser system assuming coherent detection for several modulation schemes. An appropriate set of numerical results is presented to verify the accuracy of the derived expressions.  相似文献   

10.
The influence of atmospheric turbulence on the propagation of a partially coherent beam from an unstable resonator was studied numerically. The resonant mode of the unstable resonator is obtained by iterative calculation using the Huygens–Fresnel formula. Also, using the extended Huygens–Fresnel integral, the intensity distribution of a propagating laser beam is calculated for different conditions. The influence of turbulence on the profile of partially coherent beams of an unstable resonator is studied. The effects of geometrical parameters of the resonator on the far-field beam profile are investigated. The results show that an unstable resonator with higher magnification has a superior far-field beam profile under partial coherency and turbulence conditions.  相似文献   

11.
The spreading of partially coherent beams propagating through atmospheric turbulence is studied by use of the coherent-mode representation of the beams. Specifically, we consider partially coherent Gaussian Schell-model beams entering the atmosphere, and we examine the spreading of each coherent mode, represented by a Hermite-Gaussian function, on propagation. We find that in atmospheric turbulence the relative spreading of higher-order modes is smaller than that of lower-order modes, whereas the relative spreading of all order modes is the same as in free space. This modal behavior successfully explains why under certain circumstances partially coherent beams are less affected by atmospheric turbulence than are fully spatially coherent laser beams.  相似文献   

12.
A partially coherent quasi-monochromatic Gaussian laser beam propagating in atmospheric turbulence is examined by using a derived analytic expression for the cross-spectral density function. Expressions for average intensity, beam size, phase front radius of curvature, and wave-front coherence length are obtained from the cross-spectral density function. These results provide a model for a free-space laser transmitter with a phase diffuser used to reduce pointing errors.  相似文献   

13.
The effects of turbulence on the beam quality of apertured partially coherent beams have been studied both analytically and numerically. Taking the Gaussian Schell-model (GSM) beam as a typical example of partially coherent beams, closed-form expressions for the average intensity, mean-squared beam width, power in the bucket, beta parameter, and Strehl ratio of apertured partially coherent beams propagating through atmospheric turbulence are derived. It is shown that the smaller the beam truncation parameter is, the less affected by turbulence the apertured partially coherent beams are. Furthermore, the apertured partially coherent beams are less sensitive to the effects of turbulence than unapertured ones. The main results are interpreted physically.  相似文献   

14.
Belmonte A 《Applied optics》2000,39(30):5426-5445
To analyze the effects of atmospheric refractive turbulence on coherent lidar performance in a realistic way it is necessary to consider the use of simulations of beam propagation in three-dimensional random media. The capability of the split-step solution to simulate the propagation phenomena is shown, and the limitations and numerical requirements for a simulation of given accuracy are established. Several analytical theories that describe laser beam spreading, beam wander, coherence diameters, and variance and autocorrelation of the beam intensity are compared with results from simulations. Although the analysis stems from a study of coherent lidar performance, the conclusions of the method are applicable to other areas related to beam propagation in the atmosphere.  相似文献   

15.
With the use of the general beam formulation, the modulus of the complex degree of coherence for partially coherent cosh-Gaussian, cos-Gaussian, Gaussian, annular and higher-order Gaussian optical beams is evaluated in atmospheric turbulence. For different propagation lengths in horizontal atmospheric links, the moduli of the complex degree of coherence at the source and receiver planes are examined when reference points are taken on the receiver axis and off-axis. In the on-axis case, it is observed that in propagation, the moduli of the complex degree of coherence are symmetrical and look like the intensity profile of the related coherent beam propagating in a turbulent atmosphere. For all the beams considered, the moduli of the complex degree of coherence profiles turn into Gaussian shapes beyond certain propagation lengths. In the off-axis case, the moduli of complex degree of coherence patterns become drifted at the earlier propagation lengths. Among the beams investigated, the cos-Gaussian beam is found to be almost independent of the changes in the source partial coherence parameter, and the annular beam seems to be affected the most against the variations of the source partial coherence parameter.  相似文献   

16.
Taking the partially coherent Hermite-sinh-Gaussian (H-ShG) beam as a more general type of partially coherent beams, a comparative study of the beam-width spreading of partially coherent H-ShG beams in atmospheric turbulence is performed by using the relative width, normalized beam width, and turbulence length. It is shown that the relative width versus the beam parameters, such as the spatial correlation length sigma(0), beam orders m, n, Sh-part parameter Omega(0), and waist width w(0), provides a simple and intuitive insight into the beam-width spreading of partially coherent H-ShG beams in turbulence, and the results are consistent with those using the turbulence length. The validity of our results is interpreted physically.  相似文献   

17.
18.
The closed-form expression for the mean-squared beam width of partially coherent Hermite-Gaussian (H-G) beams propagating through atmospheric turbulence is derived. The influence of turbulence on the spreading of partially coherent H-G beams is studied quantitatively by examining the mean-squared beam width. It is found that the smaller the coherence length sigma(0) of the source is, and the larger the beam order m and the wavelength lambda are, the less partially coherent H-G beams are affected by the turbulence, although the beams with smaller sigma(0), larger m, and larger lambda have greater spreading in free space. In addition, it is shown that two partially coherent H-G beams may generate the same angular spread and that there exist equivalent partially coherent H-G beams that may have the same directionality as a fully coherent Gaussian beam in free space and also in turbulence. The results are illustrated by examples, and a comparison with previous work is also made.  相似文献   

19.
Laser speckle can influence lidar measurements from a diffuse hard target. Atmospheric optical turbulence will also affect the lidar return signal. We present a numerical simulation that models the propagation of a lidar beam and accounts for both reflective speckle and atmospheric turbulence effects. Our simulation is based on implementing a Huygens-Fresnel approximation to laser propagation. A series of phase screens, with the appropriate atmospheric statistical characteristics, are used to simulate the effect of atmospheric turbulence. A single random phase screen is used to simulate scattering of the entire beam from a rough surface. We compare the output of our numerical model with separate CO(2) lidar measurements of atmospheric turbulence and reflective speckle. We also compare the output of our model with separate analytical predictions for atmospheric turbulence and reflective speckle. Good agreement was found between the model and the experimental data. Good agreement was also found with analytical predictions. Finally, we present results of a simulation of the combined effects on a finite-aperture lidar system that are qualitatively consistent with previous experimental observations of increasing rms noise with increasing turbulence level.  相似文献   

20.
We present a mathematical model and provide an analysis of optical beam director systems composed of adaptive arrays of fiber collimators (subapertures), referred to here as conformal optical systems. Performances of the following two system architectures are compared: A conformal-beam director with mutually incoherent output laser beams transmitted through fiber collimators (beamlets), and a corresponding coherent system whose beamlets can be coherently combined (phase locked) at a remote target plane. The effect of the major characteristics of the conformal systems on the efficiency of laser beam projection is evaluated both analytically and through numerical simulations. The characteristics considered here are the number of fiber collimators and the subaperture and conformal aperture fill factors, as well as the accuracy of beamlet pointing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号