首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
以高岭石质煤矸石为主要原料,V2O5为添加剂,于1400 ℃下制备了莫来石晶须增强的陶粒支撑剂,讨论了V2O5促进莫来石晶须生长机制及其添加量对支撑剂样品性能的影响.结果表明:随着V2O5的加入,支撑剂样品的主晶相莫来石逐渐生长形成莫来石晶须;当V2O5添加量为1wt%时,试样的性能最佳;体积密度1.25 g/cm3,视密度2.69 g/cm3,52 MPa闭合压力下的破碎率5.18%.  相似文献   

2.
Low density and high strength ceramic proppant was prepared by sintering high aluminium type low-grade bauxite and high iron type low-grade bauxite at the temperature range from 1300℃ to 1360℃. The phase composition and micromorphology of ceramic proppant were, respectively, characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The bulk density, apparent density, and breakage ratio of ceramic proppant were tested using standard methods. The results show that mullite crystal and corundum crystal are fully developed, the spatial network structure of rod-shaped mullite is formed, and corundum crystal is evenly distributed in the sample when the sintering temperature is 1340℃. At this temperature, the bulk density of the sample is 1.42 g/cm3, the apparent density is 2.67 g/cm3, and the breakage ratio is 5.1% under the closure pressure of 52 MPa. Then, the growth mechanism of mullite crystal in ceramic proppant was explored. The results reveal that the mullite crystal in ceramic proppant conforms to the layer growth theory. The secondary crystal nucleus is formed in the growth process and shows a step growth mechanism. With the increase in sintering temperature, the preferred orientation growth of mullite crystal finally forms needle-like morphology.  相似文献   

3.
可燃性气体的开发以及固体废弃物的再利用是响应国家低碳清洁发展、能源战略转型的重要举措。本文采用煅烧处理的煤矸石作为添加剂制备陶瓷颗粒支撑剂,通过调控支撑剂的原料配比,获得力学性能较好的材料,提升材料支撑岩层裂隙的结构强度,实现煤层气的高效开采。结果表明,煅烧煤矸石组分的适量添加可有效提高陶粒支撑剂抗破碎强度,其中42 MPa闭合压力下破碎率最低为3.66%,52 MPa闭合压力下破碎率最低为7.97%。通过观察界面腐蚀后的陶粒支撑剂微观形貌以及分析结构中的元素成分比例,发现材料中α-Fe2O3的均匀分布促进支撑剂中玻璃相的产生,提升了陶粒基体的结构致密性;同时α-Fe2O3晶粒在形核长大的过程中,由于间隙填补作用产生的微观应力对材料结构起到再次强化的效果,显著提升陶粒支撑剂的力学性能以及抗破碎能力。  相似文献   

4.
以陶粒的新原料-焦宝石为主要原料,白云石为熔剂性辅料利用陶瓷烧结工艺成功制备了粒径425~850 μm满足35 MPa闭合压力下使用的支撑剂.重点研究了助熔剂白云石的不同添加量对焦宝石陶粒支撑剂晶粒发育及性能的影响.利用SEM和XRD分别对含有不同添加量的白云石的陶粒支撑剂进行了显微形貌和物相结构的分析,并多次测试了陶粒支撑剂的体密、视密和破碎率,结果揭示了白云石的添加有助于促进棒状莫来石晶粒的发育,同时在保证破碎率低于9%的前提下具有降低陶粒支撑剂体密/视密的作用.  相似文献   

5.
深层、低渗透、高闭合压力储层将是未来油气田水力压裂的主要区域,陶粒支撑剂因在水力压裂作业中起到支撑裂缝、提高导流率、增加油气产量的作用而备受关注。随着高品位铝矾土资源日渐枯竭,低铝质原料成为制备陶粒支撑剂的主要原料,目前主要包括低品位铝矾土、硅铝质固体废弃物以及其他材料。本文在总结大量文献的基础上,阐述了低铝质原料制备陶粒支撑剂所具有的优势以及存在强度不足的缺陷。之后针对这一问题,文章提出了覆膜增强和添加剂增强两种增强方式,系统讨论了预固化覆膜增强、可固化覆膜增强、液相助熔增强和畸化晶格增强对陶粒支撑剂强度的影响,总结出针对于不同原料制备、不同应用环境下的陶粒支撑剂最佳的增强方式。最后对陶粒支撑剂未来潜在发展方向进行了展望。  相似文献   

6.
在保证支撑剂高强度的条件下,尽可能降低支撑剂的视密度是页岩气清水压裂技术开发的关键。本工作以低品位铝矾土、微米SiO2为主原料,水玻璃、纳米SiO2、氧化锰为辅料,用等离子动态烧结和后期高温烧结法制备方法制备超轻支撑剂,探讨了不同氧化锰掺杂量和不同烧结时间对其物相成分、体积密度、视密度和承压69 MPa下破碎率的影响。并基于经典PKN压裂模型模拟超轻支撑剂在裂缝中沉降与运移规律进行研究。结果表明,成功制备了视密度为1.639 g/cm3,在69 MPa下破碎率8.91%的超轻支撑剂,其最佳氧化锰掺杂量为7.5wt%,最佳烧结温度和烧结时间为950℃和2 h。超轻支撑剂比常规支撑剂在水平方向上运移了更长的距离,支撑剂在裂缝内部的分布也相对更均匀,可以满足中深油井的清水压裂要求。  相似文献   

7.
The second grade bauxite and feldspar were used to synthesize ceramic proppant materials. Phase structure and microstructure of the samples were studied by X‐ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. It was found that the feldspar, as a sintering aid, was beneficial to generate liquid phase during the sintering process. The formed liquid phase, not only promoted the densification of the samples, but also reduced the sintering temperature. With the content of feldspar increasing, the sintering temperature gradually decreased. When the content of feldspar was 4 wt.%, the breakage ratio of the samples was reduced to the lowest level of 2.2% at 1400°C under 52 MPa closed pressure, which met the requirement of Chinese Petroleum and Gas Industry Standard (SY/T 5108‐2014). Moreover, the sintering temperature was reduced by 100°C compared with the proppants without adding feldspar.  相似文献   

8.
柏雪  王玺堂 《耐火材料》2012,46(2):99-101,106
以二级铝矾土生料、黏土为原料,以锰矿粉和碳酸钙为烧结剂,制备了高强度陶粒支撑剂材料,并讨论了锰矿粉加入量(w)0、1.0%、3.0%、5.0%、7.0%和碳酸钙加入量(w)0.5%、1.0%、1.5%、2.0%以及热处理温度为1 280、1 320、1 360、1 400℃时对支撑剂材料性能的影响。结果表明:随锰矿粉加入量的增加,试样烧结致密度提高,强度增大,当锰矿粉加入量≥5.0%(w)时,试样的强度基本不变;在加入5.0%(w)锰矿粉基础上,添加碳酸钙,试样烧后强度随碳酸钙加入量的提高而提高;碳酸钙加入量为2.0%(w)时,试样的强度达到275 MPa;同时添加5.0%(w)锰矿粉和2.0%(w)碳酸钙的试样的较佳热处理温度为1 360℃。  相似文献   

9.
低密度支撑剂是通过化学改性、物理改性等方法制备得到的高性能支撑剂,具有密度低、沉降速度低等特性。本文在调研大量文献基础上,根据改性方法不同将低密度支撑剂分为多孔无包覆陶瓷低密度支撑剂、多孔无机物包覆低密度支撑剂、多孔树脂包覆低密度支撑剂,对比了不同类型低密度支撑剂制备体系组成、密度以及承压性能,总结了制备不同类型低密度支撑剂的机理、主要影响因素及应用情况。根据制备方式不同将超低密度支撑剂(ultra-light weight proppants, ULWP)分为常规方法制备、新技术制备两类。提出未来可通过结合使用多种添加剂、优化烧制工艺等方式探索莫来石相、刚玉相等晶体结构,实现支撑剂超低密度与高强度的有效结合,利用疏水改性、结构改性等方式向多功能、高性能发展,为相关研究提供借鉴和参考。  相似文献   

10.
Ceramic proppants with excellent performance were successfully prepared by second grade bauxite. The phase structure and the microstructure were investigated via X-Ray diffraction and scanning electron microscopy. The results suggested that bulk density and apparent density constantly increased, while the breakage ratio gradually decreased with the increasing in sintering temperature. When the sintering temperature reached to 1500°C, the breakage ratio obtained lowest value of 3.6% under 52 MPa closed pressure, which satisfied the requirement of Chinese Petroleum and Gas Industry standard. Furthermore, the mode of fracture for ceramic proppants was transformed from intergranular fracture into transgranular fracture and open pores had larger influence than closed pores for breakage ratio of ceramic proppants.  相似文献   

11.
Waste ceramic sands were effectively used to prepare the high-intensity and low-density ceramic proppants, realising the recycling of the waste ceramic sands. The technology involved the pelletising in an intensive mixer, in which the waste ceramic sands and other starting materials were added, and followed by heat-treatment under different sintering conditions. The sintering temperature, holding time and heating rate were optimised by investigating the crystalline phase, microstructure, density and breakage ratio of the obtained proppants. The results showed that the proppants sintered at 1260°C for 2?h with a heating rate of 5°C?min–1 under air atmosphere exhibited high crush resistance and low density, with the breakage ratio of 8.5% under 52?MPa closure pressure and bulk density of 1.65?g?cm–3. The proppants prepared by bauxite, waste ceramic sands and sintering aids are promising candidates as high-intensity and low-density fracturing proppants in future applications.  相似文献   

12.
A novel method to prepare high-porosity mullite ceramic foams by selective laser sintering (SLS) using fly ash hollow spheres (FAHSs) as raw materials was reported. The complex-shaped FAHS green bodies and ceramic foams without delamination or cracks were prepared by SLS. The influence of sintering temperatures on linear shrinkage, phase composition, porosity and mechanical properties was investigated. With the increase of sintering temperature from 1250?°C to 1400?°C, the compressive strength of ceramic foams increased from 0.2?MPa to 6.7?MPa causing the fracture mechanism change from fracturing along FAHSs to across FAHSs, while the porosity of ceramic foams decreased from 88.7% to 79.9% which was higher than those of ceramic foams prepared by the conventional methods. The relatively high porosity of ceramic foams was resulted from the inner hollow structure of FAHSs, the interspaces between stacking FAHSs, and the gaps between FAHSs directly related to SLS. The results above indicated that the fabrication of high-porosity FAHS ceramic foams by SLS could achieve the advanced utilization of FAHS solid waste.  相似文献   

13.
AlON透明陶瓷的制备与性能   总被引:1,自引:1,他引:0  
以碳热还原法制得的氮氧化铝(aluminum oxynitride,Al23O18N5,AlON)粉体为原料,Y2O3为烧结助剂,采用热压烧结法在1850~1950℃和15~25MPa下制备了AlON透明陶瓷。通过X射线衍射、扫描电子显微镜和红外光谱仪分析了AlON陶瓷样品的相组成、显微形貌和红外透过率。结果表明:所制备的AlON透明陶瓷样品未发现杂质相,且晶界处未见明显的玻璃相,晶粒间为直接结合。AlON陶瓷样品的体积密度为3.69g/cm3,约为其理论体积密度的99.5%,弯曲强度为304MPa,断裂韧性为2.14MPa·m1/2;3mm厚透明陶瓷样品的红外透过率达81.3%。而气孔、晶界和第二相杂质等是影响AlON陶瓷透明度的主要因素。  相似文献   

14.
井强山  刘冰  骆向阳 《硅酸盐通报》2017,36(6):1902-1906
运用单因素法研究了MnO2、Fe2O3、MgO和CaF2作添加剂对非金属矿压裂支撑剂的性能影响,根据行业标准中的测试方法,测试了样品的体积密度、视密度和破碎率等关键指标.采用XRD和SEM等技术对试样的晶相结构和形貌进行表征.结果表明,MnO2、Fe2O3的加入能够显著降低试样的焙烧温度;MgO、CaF2的加入有利于微晶结构形成,提高支撑剂样品的强度,降低破碎率,并且MgO、CaF2的加入量分别为3%、1%时试样具有较优的性能.  相似文献   

15.
《Ceramics International》2022,48(20):30282-30293
Ceramic cores are an important component in the preparation of hollow turbine blades for aero-engines. Compared with traditional hot injection technology, 3D printing technology overcomes the disadvantages of a long production cycle and the difficulty in producing highly complex ceramic cores. The ceramic cores of hollow turbine blades require a high bending strength at high temperatures, and nano-mineralizers greatly improve their strength. In this study, nano-silica-reinforced alumina-based ceramic cores were prepared, and the effects of nanopowder content on the microstructure and properties of the ceramic cores were investigated. Alumina-based ceramic cores contained with nano-silica were prepared using the vat photopolymerization 3D printing technique and sintered at 1500 °C. The results showed that the linear shrinkage of ceramic cores first increased and then decreased as the nano-silica powder content increased, and the bending strength showed the same trend. The fracture mode changed from intergranular to transgranular. The open porosity and bulk density fluctuated slightly. The weight loss rate was approximately 20%. When the nano-silica content was 3%, the bending strength reached a maximum of 46.2 MPa and 26.1 MPa at 25 °C and 1500 °C, respectively. The precipitation of the glass phase, change in the fracture mode of the material, pinning crack of nanoparticles, and reduction of fracture energy due to the interlocking of cracks, were the main reasons for material strengthening. The successful preparation of 3D printed nano-silica reinforced alumina-based ceramic cores is expected to promote the preparation of high-performance ceramic cores with complex structures of hollow turbine blades.  相似文献   

16.
建筑陶瓷薄板作为一种轻薄、低能耗的家装产品而逐渐成为市场的发展潮流,如何进一步对其实现减薄和增强也成为研究的热点。本文以建筑陶瓷高铝粉料为基体,设计二次球磨法并引入长径比为70~82的氧化锆纤维作为增强相,借助KH570表面改性剂改善纤维/基体(F/M)的界面结合,制备了氧化锆纤维增强超薄陶瓷板。研究表明,采用二次球磨工艺可以有效实现纤维在基体中的分散,当氧化锆纤维的掺杂量为3%(质量分数)时,超薄陶瓷板的弯曲强度可达到106.4 MPa,相较于空白样(96.8 MPa)提升了9.92%。在高温固相反应中,陶瓷熔融相的Na+、K+对氧化锆晶格的渗透作用会引起四方晶系氧化锆相向锆英石相的转变,四方晶系氧化锆相内部存在微裂纹拓展、颗粒弥漫增强、“纤维桥联-断裂拔出”等多种良性增强机制。  相似文献   

17.
《Ceramics International》2021,47(18):25169-25176
In this paper, porous ceramics with high porosity and low bulk density were prepared by using steel slag and kaolin as main raw materials and polyurethane sponge as template. The effects of steel slag particle size, zirconia addition, the solid content of the slurry, and the addition of polycarboxylic acid water-reducing agent on the properties of ceramics were studied. In addition, by adding a surfactant (Sodium dodecyl sulfate) to form fine pores on the original framework of the three-dimensional network porous ceramic, the shortcomings of the single as well as the uncontrollable density and porosity of the porous ceramic, which are produced by the template method, are improved. When the grinding time of steel slag is 90 min, the content of zirconia is 3% wt, the solid content of ceramic slurry is 64% wt, and 0.6% wt polycarboxylic acid water-reducing agent and 0.4% of surfactant are added, the prepared porous ceramic skeleton is clear and good. The porous ceramic has a low bulk density (as low as 157.869 kg/m3), high porosity (about 94.05%) and high compressive strength (0.2 MPa). The crystalline phase of it is mainly composed of anorthite, gehlenite, forsterite and quartz. The addition of zirconia, water-reducing agent and surfactant only changes the macrostructure of porous ceramics, and does not change its crystal phase composition. The preparation of porous ceramics from steel slag not only solves the recycling problem of steel slag, but also provides a good substitute for main raw materials of porous ceramics.  相似文献   

18.
采用MgO-TiO2-La2O3为烧结助剂,利用低温烧结技术制备95氧化铝瓷。研究了烧成温度和助剂含量对氧化铝陶瓷力学性能及物相组成的影响。结果表明:在MgO含量为1.5wt%,TiO2为1.0wt%,La2O3为2.5wt%,1500℃保温2h可得到抗弯强度和硬度分别为348.94MPa和79.6HRA的氧化铝陶瓷。  相似文献   

19.
Silicon carbide ceramic is a promising membrane material because of the high corrosive and high temperature resistance, and the excellent hydrophility. Here, a silicon carbide ceramic membrane with both substrate layer and separate layer composed of pure silicon carbide phase was successfully prepared. The effect of particle size on the microstructure and properties was investigated. The substrates were prepared from three silicon carbide particles at 2200 ℃. With the content increase of fine particle, the average pore size increased from 5.6 μm to 14.1 μm; meanwhile, the flexural strength of the substrate increased from 14.1 MPa to 24.6 MPa. The separation layers were made from particles of 3.0 μm and 0.5 μm. When sintered at 1900 ℃, the separation layer formed pore network with homogeneous structure. Such silicon ceramic membrane can be used in harsh conditions, including high temperature wastewater and strongly corrosive wastewater.  相似文献   

20.
硼具有高的热中子捕获截面,可用于油气井下压裂裂缝的探测。通过热重分析-差热分析法(TG-DTA)、X射线衍射分析(XRD)、能谱分析(EDS)、扫描电镜(SEM)和电感耦合原子发射光谱(ICP-AES)测试方法,研究了碳化硼(B4C)不同外加量(质量分数分别为1%、5%和10%)对压裂示踪支撑剂结构和性能的影响。结果表明,当B4C外加量1%时,主晶相为刚玉相,69 MPa闭合压力下支撑剂的破碎率和体积密度分别为5.4%和1.66 g·cm-3。B4C外加量为5%和10%时,B4C氧化生成的氧化硼与氧化铝反应生成硼酸铝晶须,刚玉相减少。B4C氧化生成的二氧化碳和氧化硼的挥发,形成支撑剂的多孔结构,导致支撑剂破碎率升高和体密度下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号