首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel poly(lactic acid) (PLA) based composite, reinforced by microcrystalline cellulose (MCC) was prepared. MCC was modified by esterification reaction using olive oil for improving the compatibility with PLA matrix. The acylated microcrystalline cellulose (AMCC) exhibited reduced polarity in comparison to unmodified MCC. AMCC/ PLA composite films were prepared using solvent casting technique. The effects of the MCC surface modification on morphological, mechanical, physical, thermal, biodegradability and barrier properties of the PLA based MCC composites were studied. FTIR analysis confirmed acylation reaction of MCC. Scanning electron microscopy analysis exhibited a uniform distribution of AMCC in PLA matrix. Barrier properties of AMCC based composites were improved as compared to MCC based composites. The tensile strength and tensile modulus of composite films (at 2 wt.% AMCC) were improved about 13% and 35% as much as those of the pure PLA films, respectively. These biodegradable composite films can be a sustainable utilization of olive oil and microcrystalline cellulose in the food packaging application.  相似文献   

2.
Poly(glycerol sebacate) (PGS) is one of the new elastomers used for soft tissue engineering, while improving its limited mechanical strength is the biggest challenge. In this work, a novel biodegradable elastomer composite PGS/cellulose nanocrystals (CNCs) was prepared by solution‐casting method and the mechanical properties, sol–gel contents, crosslink density, and hydrophilic performance were characterized. The thermal and degradation properties of composites were also investigated. Results show that the addition of CNCs into PGS resulted a significant improvement in tensile strength and modulus, as well as the crosslink density and the hydrophilicity of PGS. When the CNCs loading reached 4 wt %, the tensile strength and modulus of the composite reached 1.5 MPa and 1.9 MPa, respectively, resulting 204% and 158% increase compared to the pure PGS. Prolonging the curing time also improved the strength of both the neat PGS and PGS/CNCs composites according to the association and shift of hydroxy peaks around 3480 cm?1. DSC results indicate that the addition of CNCs improved both the crystallization capacity and moving capability of PGS molecular chain. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42196.  相似文献   

3.
Environmentally friendly and lightweight silylated cellulose nanocrystal (SCNCs)/waterborne polyurethane (WPU) composite films that exhibit excellent mechanical properties and water resistance were prepared. The cellulose nanocrystals (CNCs) of the filamentous structure were surface-modified by γ-aminopropyltriethoxysilane (APTES) and then introduced into a castor oil-based aqueous polyurethane (WPU) matrix by in situ polymerization. The morphology and silylation degree of CNCs were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier infrared transform spectroscopy at different APTES concentrations. The results showed that the surface of the nanocellulose crystal has the best silylation morphology and thermal stability with incorporation of 6 wt % APTES. The thermal stability, mechanical properties, surface morphology, and water resistance of the nanocomposites were investigated by TGA, tensile test, SEM and optical contact angle, water absorption test, and mechanical property test after immersed in water. It was found that the effective introduction of modified CNCs resulted in a significant increase in tensile strength at high levels, and the thermal stability and hydrophobicity of the material were improved simultaneously, reaching the percolation threshold at a 0.50 wt % SCNCs as determined theoretically. This study provided an approach to the design and development of surface-modified CNCs/vegetable oil-based polymer composites by using an appropriate concentration of silane coupling agent to modify CNCs and improve the compatibility between nanocellulose and vegetable oil-based polymer matrices. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48228.  相似文献   

4.
Polypropylene (PP) matrix calcium alginate fiber reinforced unidirectional composites (10% fiber by weight) were fabricated by compression molding. Tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM), and impact strength (IS) were found to be 26 MPa, 950 MPa, 38 MPa, 1320 MPa, and 20 kJ/m2, respectively. Degradation tests of composites were performed for 6 weeks in soil and it was found that composites retained almost 75% of its original strength. The interfacial properties of the composite were investigated by using single fiber fragmentation test (SFFT) and by scanning electron microscope (SEM).  相似文献   

5.
Polyurethane, sodium ionomer (Surlyn 8150), and lignin (PSL)-based composite films were prepared by the solution casting method with different weight percentages of lignin. The relationships among the morphology, thermal resistance, mechanical, and dynamic mechanical properties for all composites were characterized. The structural interactions, microstructure, and optical properties of the composite were studied by Fourier transform infrared, scanning electron microscopy (SEM), X-ray diffraction, and ultraviolet (UV) spectroscopy. The mechanical and UV absorbance properties of the composite films improved significantly with the addition of lignin particles. The tensile strength increased from 42.5 to 57.2 MPa. Dynamic mechanical analysis results show that the storage modulus of the composites increased and exhibited a single Tg. PSL composite films show excellent water barrier properties, with improved surface hydrophobicity. SEM images revealed that a relatively uniform phase morphology and good interfacial compatibilization wereachieved. These results suggest that all of the composite films with PU, Na ionomers, and lignin materials exhibited good compatibility and miscibility. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48885.  相似文献   

6.
Novel castor oil‐based polyurethane/α‐zirconium phosphate (PU/α‐ZrP) composite films with different α‐ZrP loading (0–1.6 wt %) and different NCO/OH molar ratios were synthesized by a solution casting method. The characteristic properties of the PU/α‐ZrP composite films were examined by Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile testing. The results from Fourier transform infrared spectroscopy indicated that strong intermolecular hydrogen bonding formed between α‐ZrP and PU, XRD and SEM results revealed that the α‐ZrP particles were uniformly distributed in the PU matrix at low loading, and obvious aggregation existed at high loading. Because of hydrogen bonding interactions, the maximum values of tensile strength were obtained with 0.6 wt % α‐ZrP loading and 1.5 of NCO/OH molar ratio in the matrix. Evidence proved that the induced α‐ZrP used as a new filler material can affect considerably the mechanical and thermal properties of the composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
Nanocomposite films were prepared through the blending of polyimide (PI) with octaphenyl silsesquioxane (OPS) and an amino‐functionalized analogue, octaaminophenyl silsesquioxane (OAPS), with a solution‐casting method. Although the PI–OPS composites showed visible phase separation at 5 wt %, the PI–OAPS composites were transparent with visible phase separation occurring only at 50 wt % OAPS. The interfacial interactions and homogeneity of the composites were characterized with scanning electron microscopy (SEM) and dynamic mechanical analysis. SEM analysis showed a uniform fracture surface for OAPS composites at concentrations up to 20 wt %. Interestingly, OAPS‐rich particles with sizes of less than 1 μm were formed within the PI matrix for the 50 wt % composite. The PI–OAPS composites showed higher glass‐transition temperatures (Tg's) than the pure PI. The PI–OPS composites showed a Tg lower than that of the pure PI, and this suggested poor interfacial interactions. The slightly enhanced thermal stability of PI–OAPS composites (up to 20 wt %) was attributed to the inherent thermal stability of OAPS at higher temperatures. There were small increases in the modulus and strength for the composites with respect to the base polymer. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
In this article Polypropylene/Polypyrrole (PP/PPy) and Polypropylene/polypyrrole-graphene oxide (PP/PPy-GO) nanocomposites were prepared by melt mixing. PPy nanoparticles and PPy-GO nanocomposite were prepared by chemical polymerization and served as nanofillers. FTIR, XRD and SEM analysis were used for the characterization of PPy and PPy-GO composites. The effects of PPy and PPy-GO loading level on the morphology, tensile and electrical properties of PP-based nanocomposites were examined. It was found that the Young's modulus and tensile strength increased with the increase of nanofiller content. Tensile results also showed that PPy-GO composite significantly affected the mechanical properties of PP based nanocomposites compared to the PPy nanoparticles. It was observed that the addition of 1% wt. PPy-GO into PP, increased the Young's modulus about 30% compared as with pure PP. Electrical conductivity measurements showed that conductivity of PP nanocomposites increased up to 1 × 10?3 S/cm for PP/PPy-GO nanocomposites. It was also observed that PP-g-MA improved the distribution of PPy and PPy-GO nanocomposites and affected the morphology, electrical and mechanical properties of PP-based nanocomposites.  相似文献   

9.
Jute (Hessian cloth) reinforced polymer composites were prepared with a mixture of 2-hydroxy ethyl methacrylate (HEMA) and aliphatic urethane diacrylate oligomer (EB-204), and then cured under gamma radiation. Thick pure polymer films (2 mm thickness) were prepared by using the same monomer and oligomer at different weight ratios, and 500 krad of total gamma radiation dose at 600 krad/hr was selected for the curing of all composites. Total radiation dose, jute content, and monomer concentration were optimized with the extent of mechanical properties. Among all resulting composites, the composite of 38% jute content at monomer:oligomer = 50:50 (w/w) ratios showed the better mechanical properties, such as 108% increase in tensile strength (TS), 58% increase in bending strength (BS), 138% increase in tensile modulus (TM), and 211% increase in bending modulus (BM) relative to pure polymer film. The gel content values were also found to increase with the increase of jute content in the composite. But the elongation at break (Eb) for both tensile and bending was found to decrease with increasing jute content. The best mechanical properties were obtained when jute fibers were pre-irradiated with UV radiation, such as 150% increase in TS, 90% increase in BS relative to polymer film, 19% increase in TS, and 15% increase in BS relative to untreated jute-based composites. A water uptake behavior investigation of the resulting composites was also performed and composites based on UV-treated jute showed the minimum water uptake value.  相似文献   

10.
In this work, poly(vinyl alcohol) (PVA) and cellulose nanocrystals (CNCs) were crosslinked using sodium tetraborate decahydrate (borax) to improve the mechanical and thermal properties of the neat PVA. The results showed that the CNCs affected the crystallization behavior of the crosslinked PVA. The crystallization temperature of the crosslinked PVA with CNCs increased considerably from ~152 to ~187 °C. The continuous improvement of the thermal stability was observed with the increasing content of CNCs in the crosslinked PVA films. Additionally, the strong interaction between the CNCs and PVA was theoretically estimated from the Young's modulus values of the composites. Thermodynamic mechanical testing revealed that the crosslinked PVA composite films with CNCs could bear higher loads at high temperature compared to the films without the CNCs. At 60 °C, 2.7 GPa was reported for the storage modulus of the crosslinked composites with 3 wt % of CNCs, twice as high as that for the crosslinked films without CNCs. Moreover, creep results were improved when CNCs were added in the crosslinked nanocomposites. The materials prepared in this work could broaden the opportunities for applications in a wide range of temperatures. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45710.  相似文献   

11.
The influence of untreated and benzoylated oil palm empty fruit bunch (OPEFB) short fiber loading on the mechanical properties of the poly(vinyl chloride) (PVC) composite was studied. Benzoylated OPEFB was produced by mixing OPEFB with NaOH solution and agitating vigorously with benzoyl chloride. The PVC resin, various additives, and OPEFB were first dry blended using a laboratory mixer before being milled into sheets on a two-roll mill at 165°C and then hot pressed into composite samples at 180°C. The tensile and impact strength of untreated and benzoylated OPEFB composites decreased whereas the tensile modulus increased with increasing fiber loading from 0 to 40 phr. However, the benzoylated OPEFB was able to improve the tensile properties and impact strength of composites when compared to the untreated fiber. The enhancement of mechanical properties showed that the treatment improved the OPEFB fiber-PVC matrix interfacial adhesion. The improvement of adhesion was clarified by SEM micrographs, the increase of water resistance, and the reduction of glass transition temperature of the composites.  相似文献   

12.
A facile route was adopted to blend the matrix. The PMMA/PEG blend was reinforced with three types of nanofillers, i.e., pristine MWCNT (P-CNT), amine functionalized MWCNT (PDA-EA-CNT) and nanobifiller i.e. nanodiamond functional MWCNT (PDA-EA-CNT-ND) to yield three different types of nanocomposites i.e. PMMA/PEG/P-CNT, PMMA/PEG/PDA-EA-CNT and PMMA/PEG/PDA-EA-CNT-ND. These nanocomposites were reinforced with nanofiller loading (1 wt. %, 3 wt. %, 5 wt. %, 10 wt. %, 30 wt. % and 50 wt. %) by solution casting method. Structure of composite and nanofillers was confirmed by FTIR. FESEM imaging revealed that nanocomposites have micro porous morphology. At high magnification, distribution of functionalized CNT/ND appears to be protruding out of the polymeric matrix. The TGA result suggests that the thermal stability of the nanocomposites was enhanced in comparison to PMMA due to grafting of filler molecules with PMMA/PEG macromolecules. The DTG results showed that the bifiller nanocomposites (PMMA/PEG/PDA-EA-CNT-ND) exhibited improved thermal stability with Tmax (431°C) as compared to P-CNT and amine functionalized CNT (PMMA/PEG/PDA-EA-CNT) with Tmax of 395°C and 418°C respectively. XRD results showed fine interaction between filler and the polymeric matrix. As the filler loading was increased the composites showed pronounced XRD peak at 25.9°, corresponding to (002) reflection of nanotubes. Significant improvement in the mechanical properties of composites was recorded with the reinforcement of fillers as compared to the neat matrix. The most significant improvement in tensile strength and elastic modulus was observed for the bifiller nanocomposites with 5 wt. % PDA-EA-CNT-ND. They showed a tensile strength and elastic modulus of 29.9 MPa and 1474.31 MPa respectively as compared to amine functionalized CNT with tensile strength (25.7) and elastic modulus (1466.99 MPa)and P-CNT with tensile strength(25 MPa) and elastic modulus (1155.75 MPa).  相似文献   

13.
Jute fabrics/gelatin biocomposites were fabricated using compression molding. The fiber content in the composite varied from 20–60 wt%. Composites were subjected to mechanical, thermal, water uptake and scanning electron microscopic (SEM) analysis. Composite contained 50 wt% jute showed the best mechanical properties. Tensile strength, tensile modulus, bending strength, bending modulus and impact strength of the 50% jute content composites were found to be 85 MPa, 1.25 GPa, 140 MPa and 9 GPa and 9.5 kJ/m2, respectively. Water uptake properties at room temperature were evaluated and found that the composites had lower water uptake compared to virgin matrix.  相似文献   

14.
Wheat straw fiber‐polypropylene (PP) composites were prepared to investigate the effects of wheat straw fiber content (10, 20, 30, 40, and 50 wt %), fiber size (9, 28, and 35 mesh), and maleic anhydride grafted polypropylene (MAPP) concentration (1, 2, 5, and 10 wt %) on the static and dynamic mechanical properties of the wheat straw fiber‐PP composites in this study. The tensile modulus and strength of the composites increased linearly with increasing wheat straw fiber content up to 40%, whereas the elongation at break decreased dramatically to 3.78%. Compared with the composites made of the longer wheat straw fiber, the composites made of the fines (>35 mesh) had a slightly higher tensile strength of 31.2 MPa and tensile elongation of 5.39% at break. With increasing MAPP concentration, the composites showed an increase in tensile strength, and the highest tensile strength of 34.0 MPa occurred when the MAPP concentration reached 10 wt %. As wheat straw fiber content increased from 0 to 40%, the flexural modulus of the composites increased gradually from 1335 to 3437 MPa. The MAPP concentration and wheat straw fiber size distribution had no appreciable effect on the static flexural modulus of the composites. The storage flexural modulus of the composites increased with increasing wheat straw fiber content. The scanning electron microscopy (SEM) observation on the fracture surface of the composites indicated that a high wheat straw fiber content (>30 wt %) resulted in fiber agglomeration and a reduction in interfacial bonding strength. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
In the present work, effects of oxidation and fiber content (from 20 to 35 wt. %) on the physicomechanical properties of jute-polypropylene (PP) composites were studied. Mechanical properties (tensile strength, tensile modulus, elongation at break, flexural strength, flexural modulus, and charpy impact strength) were measured for all raw and oxidized jute-PP composites. Improved mechanical properties were obtained for oxidized jute-PP composites. Interfacial adhesion and bonding between the fiber and PP matrix were investigated by scanning electron micrograph analysis. Improved interfacial interactions and reduced water absorption were found for oxidized jute-PP composites. Water absorption tests of all composites were also performed.  相似文献   

16.
Abstract

Unidirectional isora fibre reinforced epoxy composites were prepared by compression moulding. Isora is a natural bast fibre separated from Helicteres isora plant by retting process. The effect of alkali treatment on the properties of the fibre was studied by scanning electron microscopy (SEM), IR, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Mechanical properties such as tensile strength, Young's modulus, flexural strength, flexural modulus and impact strength of the composites containing untreated and alkali treated fibres have been studied as a function of fibre loading. The optimum fibre loading for tensile properties of the untreated fibre composite was found to be 49% by volume and for flexural properties the loading was optimised at ~45%. Impact strength of the composite increased with increase in fibre loading and remained constant at a fibre loading of 54·5%. Alkali treated fibre composite showed improved thermal and mechanical properties compared to untreated fibre composite. From dynamic mechanical analysis (DMA) studies it was observed that the alkali treated fibre composites have higher E' and low tan δ maximum values compared to untreated fibre composites. From swelling studies in methyl ethyl ketone it was observed that the mole percentage of uptake of the solvent by the treated fibre composites is less than that by the untreated fibre composites. From these results it can be concluded that in composites containing alkalised fibres there is enhanced interfacial adhesion between the fibre and the matrix leading to better properties, compared to untreated fibre composites.  相似文献   

17.
In this study, the influence of coupling agent concentration (0 and 3 wt%), wood fiber content (50, 60, 70, and 80 wt%), and size (40–60, 80–100, and 160–180 mesh) on the mechanical properties of wood/high-density-polyethylene (HDPE) composites (WPCs) was investigated. WPC samples were prepared with poplar wood-flour, HDPE, and polyethylene maleic anhydride copolymer (MAPE) as coupling agent. It was found that the tensile properties and the flexural properties of the composites were improved by the addition of 3 wt% MAPE, and the improved interfacial adhesion was well confirmed by SEM micrographs. It was also observed that the best mechanical properties of wood/HDPE composites can be reached with larger particle size in the range studied, while too-small particle size was adverse for the mechanical properties of wood/HDPE composites. Moreover, the tensile modulus, tensile strength, and flexural strength of WPCs decreased with the increase in fiber content from 50 to 80 wt%; the flexural modulus of WPCs increased with the increase in fiber content from 50 to 70 wt% and then decreased as the fiber content reached 80 wt%. The variances in property performance are helpful for the end-user to choose an appropriate coupling agent (MAPE) concentration, wood fiber content, and particle size based on performance needs and cost considerations.  相似文献   

18.
This study reports the preparation and characterization of composites with recycled poly (vinyl butyral) (PVB) and wet blue leather fiber with leather contents of 30, 50, and 70 wt%, using an extruder equipped with a Maillefer single screw operated with a flat extrusion die. The components of the composites were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and Fourier transform infrared spectroscopy (FTIR). After extrusion, the PVB/leather composite plates were compression‐molded to obtain specimens for testing the tensile properties, hardness, abrasion resistance, and tear strength. The morphologies of the composites were analyzed by scanning electron microscopy (SEM). The DMA and FTIR analyses showed that the recycled PVB contained plasticizer remained in the polymer matrix after extrusion. The SEM analysis revealed good interfacial adhesion between the PVB matrix and the leather fibers. Increasing the leather content in the composites led to a significant increase in the tensile modulus and a reduction in the tensile strain at breaks. The Shore hardness of the composites increased with the wt% of leather, whereas the abrasion resistance decreased. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers.  相似文献   

19.
Calcium alginate fibers were prepared from sodium alginate by extruding aqueous sodium alginate solution (4% by weight) into a calcium chloride (2% by weight) bath. Water uptake and mechanical properties of the calcium alginate fiber were investigated. Water uptake tests of calcium alginate showed that it absorbed 50% of water within a minute and indicated strong hydrophilic nature. Polyvinyl alcohol (PVA)-based calcium alginate fiber reinforced unidirectional composites (10% fiber by weight) were fabricated by compression molding. Tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM) and impact strength (IS) of the PVA matrix and the composite were evaluated. TS, BS, TM, and BM of the PVA matrix were found 10, 18, 320 and 532 MPa, respectively. TS and BS of the PVA based composite were found to be 16 and 27 MPa, respectively, which were 60 and 50% higher than that of the PVA matrix. TM and BM of the composite were found to be 620 and 1056 MPa, respectively, which were improved by 94 and 98% over the matrix material. Degradation tests of the composites were performed for up to 2 months in soil medium and found that composites lost almost 50% of its original mechanical properties. The interfacial properties of the composite were also investigated by using the single fiber fragmentation test (SFFT).  相似文献   

20.
In this study, cellulose nanocrystals/zinc oxide (CNCs/ZnO) nanocomposites were dispersed as bifunctional nano-sized fillers into poly(vinyl alcohol) (PVA) and chitosan (Cs) blend by a solvent casting method to prepare PVA/Cs/CNCs/ZnO bio-nanocomposites films. The morphology, thermal, mechanical and UV-vis absorption properties, as well antimicrobial effects of the bio-nanocomposite films were investigated. It demonstrated that CNCs/ZnO were compatible with PVA/Cs and dispersed homogeneously in the polymer blend matrix. CNCs/ZnO improved tensile strength and modulus of PVA/Cs significantly. Tensile strength and modulus of bio-nanocomposite films increased from 55.0 to 153.2 MPa and from 395 to 932 MPa, respectively with increasing nano-sized filler amount from 0 to 5.0 wt %. The thermal stability of PVA/Cs was also enhanced at 1.0 wt % CNCs/ZnO loading. UV light can be efficiently absorbed by incorporating ZnO nanoparticles into a PVA/Cs matrix, signifying that these bio-nanocomposite films show good UV-shielding effects. Moreover, the biocomposites films showed antibacterial activity toward the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The improved physical properties obtained by incorporating CNCs/ZnO can be useful in variety uses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号