首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Size quantised cadmium sulphide (CdS) nanocrystalline thin films with different particle sizes and stoichiometric ratios were successfully grown on indium tin oxide substrates using an aqueous synthetic route. The effect of cadmium (Cd) to sulphur (S) ratio on the optical properties of CdS nanocrystalline films was investigated using EDAX, UV-vis spectroscopy, photoluminescence and Raman spectroscopy. A satisfactory stoichiometric condition was achieved for 0.13 M concentration of thiourea whereas concentrations in the range of 1-1.2% of mercaptoethanol capping agents produced values much smaller than Wannier exciton diameter for CdS grain sizes, leading to quantum confinement. Photoluminescence emission bands and Raman peaks were analysed for the physical understanding of optimum growth of CdS quantum dots.  相似文献   

2.
We report a synthesis of cadmium selenide quantum dots (Q-CdSe) by refluxing a mixture of cadmium acetate, selenium powder, sodium sulfite and 2-mercaptoethanol in N,N′-dimethyl formamide (DMF)/water solution. X-ray and electron diffractions suggest the formation of hexagonal phase of size quantized CdSe. Based on TEM analysis, the formation of nanoparticles with an average diameter of 3.5 ± 0.5 nm is inferred. Their sols in DMF and dimethyl sulphoxide (DMSO) gave characteristic absorption peaks at 300 nm and 327 nm, which is attributed to the formation of high quality, size quantized CdSe particles. Extracted particles from the sol were readily redispersed in DMF and DMSO, which were diluted further with water without losing their optical and colloidal properties. FTIR spectroscopy suggested the formation of 2-mercaptoethanol thiolate on the particle surface, with free-OH groups available for linkage. Sols in DMSO and their solutions in water displayed an intense photoluminescence (PL).  相似文献   

3.
Previous studies have shown that engineered nanomaterials can be transferred from prey to predator, but the ecological impacts of this are mostly unknown. In particular, it is not known if these materials can be biomagnified-a process in which higher concentrations of materials accumulate in organisms higher up in the food chain. Here, we show that bare CdSe quantum dots that have accumulated in Pseudomonas aeruginosa bacteria can be transferred to and biomagnified in the Tetrahymena thermophila protozoa that prey on the bacteria. Cadmium concentrations in the protozoa predator were approximately five times higher than their bacterial prey. Quantum-dot-treated bacteria were differentially toxic to the protozoa, in that they inhibited their own digestion in the protozoan food vacuoles. Because the protozoa did not lyse, largely intact quantum dots remain available to higher trophic levels. The observed biomagnification from bacterial prey is significant because bacteria are at the base of environmental food webs. Our findings illustrate the potential for biomagnification as an ecological impact of nanomaterials.  相似文献   

4.
In order to understand the effect of capping ligand on optical and electrical properties of semiconductor quantum dots (QDs), we have added liquid crystal (8CB) to the CdSe/CdS/ZnS QDs monolayer formed via the Langmuir Blodgett technique And studied emission spectra and conducting properties of resulting QDs. The assembly of QDs monolayer modified by liquid crystal (8CB) can be tuned by varying the temperature. The mechanism of the influence of capping ligands on the gap energy, dipole moment and charge distribution within (CdSe)13 cluster was studied via quantum chemical calculations, i.e. we have used density functional theory to systematically investigate the equilibrium configuration of QDs passivated by oleic acid and liquid crystal ligands.  相似文献   

5.
Structural, electronic and optical properties of two-dimensional (2D) cadmium selenide (CdSe) structures with \(2\times 2\) periodicities are investigated. First principles total energy calculations are performed within the periodic density functional theory. Initially, the structural properties are determined using the local density approximation as implemented in the PWscf code of quantum ESPRESSO package. To investigate the electronic properties, the GW method is applied to determine the energy gap within the plasmon pole and the random phase approximations. Optical properties are investigated to determine the dielectric constant and the Bethe–Salpeter theory is used to calculate the exciton binding energies. Zinc blende and wurtzite phases are considered to calculate the bulk energy gaps, which are compared to the experimental values, finding good agreement. The 2D structure exhibits an energy gap larger than that of the bulk, indicating the effects of reduction in dimensionality; these changes can be attributed to the dangling bonds that are present in the 2D layer.  相似文献   

6.
7.
Currently, environmental pollution caused by organic compounds leads to severe negative consequences in the human society. Therefore, the removal of these pollutants from aqueous media has become one of the most important issues in environmental science. In the present study, CdS QDs were successfully prepared under aqueous conditions using l-arginine as the stabilizing agent. Optical property determination results reveal that the CdS QDs exhibited strong absorption and photoluminescence in a visible wavelength region. Moreover, the CdS QDs could effectively degrade two organic dyes under visible light irradiation. This suggested that the CdS QDs prepared in this work might be used as the potential photocatalyst to effectively treat the organic pollutants under visible light irradiation.  相似文献   

8.
采用前驱体分解法制备了Cu-In-S量子点,研究了制备工艺对Cu-In-S量子点的形貌以及光学性能的影响。实验结果表明,反应时间和反应温度可影响Cu-In-S纳米颗粒的尺寸和光学性能。随时间增加,Cu-In-S粒径变大,同时会伴随着棒状晶体的出现,荧光发射谱的峰位发生红移。随反应温度升高,纳米晶的形核速率和长大速率增加,并且粒径也有增大,纳米晶的形状可以由单一的球形变为球形与棒状的混合,荧光谱峰位亦会发生红移。X射线光电子能谱分析表明,所制备颗粒为CuInS2纳米晶。为进一步制备无毒量子点发光器件(QLEDs)奠定了基础。  相似文献   

9.
Recent years have witnessed tremendous research in quantum dots as excellent models of quantum physics at the nanoscale and as excellent candidates for various applications based on their optoelectronic properties. This review intends to present theoretical and experimental investigations of the near-field optical properties of these structures, and their multimodal applications such as biosensors, biological labels, optical fibers, switches and sensors, visual displays, photovoltaic devices and related patents.  相似文献   

10.
We investigated the suitability of dithiocarbamate (DTC) species as capping ligands for colloidal CdSe-ZnS quantum dots (QDs). DTC ligands are generated by reacting carbon disulfide (CS(2)) with primary or secondary amines on appropriate precursor molecules. A biphasic exchange procedure efficiently replaces the existing hydrophobic capping ligands on the QD surface with the newly formed DTCs. The reaction conversion is conveniently monitored by UV-vis absorption spectroscopy. Due to their inherent water solubility and variety of side chain functional groups, we used several amino acids as precursors in this reaction/exchange procedure. The performance of DTC-ligands, as evaluated by the preservation of luminescence and colloidal stability, varied widely among amino precursors. For the best DTC-ligand and QD combinations, the quantum yield of the water-soluble QDs rivaled that of the original hydrophobic-capped QDs dispersed in organic solvents. The mean density of DTC-ligands per nanocrystal was estimated through a mass balance calculation which suggested nearly complete coverage of the available nanocrystal surface. The accessibility of the QD surface was evaluated by self-assembly of His-tagged dye-labeled proteins and peptides using fluorescence resonance energy transfer. DTC-capped QDs were also exposed to cell cultures to evaluate their stability and potential use for biological applications. In general, DTC-capped CdSe-ZnS QDs have many advantages over other water-soluble QD formulations and provide a flexible chemistry for controlling the QD surface functionalization. Despite previous literature reports of DTC-stabilized nanocrystals, this study is the first formal investigation of a biphasic exchange method for generating biocompatible core-shell QDs.  相似文献   

11.
Cadmium selenide films have been deposited on glass substrate dip method. The resultant films were annealed upto 473 K temperature. The structural properties of cadmium selenide thin films have been investigated by X-ray diffraction techniques. The X-ray diffraction spectra showed that cadmium selenide thin films are polycrystalline. As deposited sample shows cubic phase whereas sample annealed at 473 K shows hexagonal phase. The optical properties showed direct band gap values were found to be in the region of 1.82–1.55 eV. The electrical studies shows conductivity increases with increase in annealing temperature. The optoelectric and structural data are discussed from the point of applications based on achieving high performance devices.  相似文献   

12.
Pham TA  Choi BC  Jeong YT 《Nanotechnology》2010,21(46):465603
A facile approach for the preparation of a novel hybrid material containing graphene and an inorganic semiconducting material, cadmium sulfide quantum dots (CdS QDs), is demonstrated for the first time. First, amino-functionalized CdS QDs were prepared by modifications of the kinetic trapping method. Then, pristine graphite was oxidized and exfoliated to obtain graphene oxide nanosheets (GONS), which were then acylated with thionyl chloride to introduce acyl chloride groups on their surface. Subsequently, immobilization of the CdS QDs on the GONS surface was achieved through an amidation reaction between the amino groups located on the CdS QDs surface and the acyl chloride groups bound to the GONS surface. Fourier transform infrared spectroscopy (FT-IR), (1)H nuclear magnetic resonance ((1)H-NMR), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and energy dispersive x-ray (EDX) spectroscopy were employed to investigate the changes in the surface functionalities, while high resolution transmission electron microscopy (HR-TEM) and field emission scanning electronic microscopy (FE-SEM) were used to study the morphologies and distribution of the CdS QDs on the GONS surface. Thermogravimetric analysis (TGA) was employed to characterize the weight loss of the samples on heating. Photoluminescence (PL) measurements were used to study the optical properties of the prepared CdS QDs and the CdS-graphene hybrid material.  相似文献   

13.
Lead chalcogenide nanocrystalline materials offer possibilities of improving the efficiency of various optoelectric/thermoelectric applications, especially in solar cells, by generating more carriers with incoming photons, or by extending the bandgap toward the infra-red region. In this work, we suggest the synthetic approach of creating extended PbSe structures which shows better performances when incorporated into an electric device. Firstly, we synthesized monodisperse cubic-structured single-crystalline lead selenide nanocrystal quantum dots using lead acetate and oleic acid in non-coordinating solvent without additional surfactants. Also, single-crystal cubic PbSe nanowires were synthesized in a mixture of surfactants such as trioctylphosphine and phenyl ether. Morphologies of wires and dots were precisely controlled via reaction temperature and the surface ligands. Phenyl ether was found to facilitate the oriented attachment. Further, current-voltage characteristics of drop-casted 2D arrays of nanocrystalline materials were examined.  相似文献   

14.
This letter demonstrates the use of one of the nucleobases, ‘cytosine’ as a new capping agent in controlling the size of the nanoparticles. A size dependent blue shift in optical absorption with enhanced luminescence is observed. Since the calculated density of states do not show any change in the band gap of as-prepared quantum dots after capping, the observed blue shift of the absorption peak can solely be attributed to the so-called size-effect whereas the enhancement in luminescence to surfactant mediated defect passivation. It is expected that the observed properties of the cytosine capped CdSe quantum dots would facilitate a better bio-compatibility of tailor-made nanoparticles for bio-imaging applications.  相似文献   

15.
An optical sensor for detection of herbicides was developed through the functionalization of CdTe quantum dots (CdTe-QDs) with cysteamine hydrochloride. The functionalized CdTe-QDs was characterized with various physicochemical methods such as X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray analysis, Ultraviolet–visible and photoluminescence spectroscopies. The optical band gap of the functionalized CdTe-QDs as calculated by using Tauc plot was 3.75 eV. It was found that the fluorescence intensity of the functionalized CdTe-QDs quenched linearly in the presence of different herbicides according to the Stern–Volmer equation. Thus, the functionalized CdTe-QDs can be used as simple, rapid, inexpensive, and optical sensitive sensor for practical detection of herbicides.  相似文献   

16.
The absorption spectra of colloidal cadmium sulfide quantum dots in electrolytic solutions are found to manifest a shift in the absorption threshold as the concentration of the electrolyte is varied. These results are consistent with a shift in the absorption threshold that would be caused by electrolytic screening of the field caused by the intrinsic spontaneous polarisation of these würtzite structured quantum dots. These electrolyte-dependent absorption properties provide a potential means of gaining insights on the variable extracellular and intracellular electrolytic concentrations that are present in biological systems.  相似文献   

17.
High-quality CdS nanocrystals with highly efficient and narrow band edge emission have been prepared by means of decomposition of suitable precursors in non-coordinating solvents at high temperature. The role played by capping ligands, solvents and their interactions has been investigated by optical measurements. Capping layer exchange treatments with different amines have been carried out suggesting a possible influence of alkylic chain length in modifying the optical properties of CdS nanocrystals. Enhancement of band edge emission has been demonstrated with octylamine ligand.  相似文献   

18.
We study how the as-received chemical reagents of a commonly used ligand oleylamine (C18-amine) and precursor PbCl2, each at two different purity statuses, affect the growth of PbS quantum dots in a solventless, relatively green, constant reaction-temperature synthesis system. It is found that the growth behavior of PbS quantum dots reflected from their absorption and photoluminescence spectra is quite sensitive to the purity status of the ligand and precursor under certain circumstances, while the lifetime and quantum yield of quantum dots exhibiting a monomodal or nearly monomodal photoluminescence band are not considerably affected. For instance, the effect of the ligand purity status is particularly evident when a higher PbCl2/S ratio is applied. The use of lower purity C18-amine leads to the growth showing much stronger temperature dependence and also facilitates the earlier entry of Ostwald process highlighted by a bimodal photoluminescence structure. Consistently, a 2 wt% increase in the PbCl2 purity from 98 wt% to 100 wt% (or the absence of 2 wt% of impurities) largely postpones the start of Ostwald process and thus significantly improves both absorption and photoluminescence spectra. These results imply that in order to produce PbS quantum dots with narrow absorption and photoluminescence peaks, one needs to optimize reaction parameters as well as select chemicals of appropriate purities. Moreover, the unintentional involvement of chemicals of different purity status may partially account for the irreproducibility problem often encountered in quantum dot synthesis.  相似文献   

19.
In the present report, cadmium sulfide (CdS) colloidal quantum dots (CQDs) with average diameter of 6 nm were synthesized by using oleylamine as ligand and solvent. The insulating oleylamine ligands form barriers around the CdS CQDs to decrease carrier mobility. In order to remove the ligands and improve the photoelectrical properties of the closed-packed film, ethanedithiol, mercaptopropionic acid and cetyltrimethylammonium bromide (CTAB) were applied for solid state ligand exchange. CTAB treated film had the fastest 3 dB bandwidth of 144.7 Hz and yielded the highest detectivity of 1.37 × 108 Jones. The excellent properties of ligand passivation have important application in nanocrystals based electronic and optoelectronic devices.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号