首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work examines the algebraic \(\mu -I\) relation proposed for steady uniform dry granular flows via unsteady granular avalanche experiments of finite nearly identical dry glass spheres down an inclined narrow reservoir of smooth bed. Lateral high-speed digital imaging permits particle tracking velocimetry with which we can evaluate bulk local instantaneous volume fraction and velocity components to conduct a quasi-two-dimensional control volume analysis of streamwise momentum assuming an internal shear stress based on the \(\mu -I\) rheology, a hydrostatic normal stress and a Coulomb yielding condition at lateral walls. Hence, the desired \(\mu \) is a function of flow dynamics and a wall friction coefficient \(\mu _w\). Complementary sliding table experiments were conducted to estimate an upper bound of \(\mu _w=0.17\) which was used with a chosen nonzero lower bound \(\mu _w=0.05\) to extract possible range of \(\mu \) at a local instantaneous inertial number I. The so-obtained local instantaneous \(\mu -I\) data conform to the non-linear monotonically increasing trend proposed for steady inertial flows above a crossover value \(I_c\approx 0.03\). Below \(I_c\), a peculiar segment of decaying \(\mu \) with I was revealed agreeing to the rheology tests in quasi-static regime.  相似文献   

2.
The steady motion of a rotating sphere is analysed through two contrasting viscoelastic models, a constant viscosity (FENE-CR) model and a shear-thinning (LPTT) model. Giesekus (Rheol. Acta 9:30–38, 1970) presented an intriguing rotating viscoelastic flow, which to date has not been completely explained. In order to investigate this flow, sets of parameters have been explored to analyse the significant differences introduced with the proposed models, while the momentum-continuity-stress equations are solved through a hybrid finite-element/finite volume numerical scheme. Solutions are discussed for first, sphere angular velocity increase (\(\varOmega\)), and second, through material velocity-scale increase (\(\alpha\)). Numerical predictions for different solvent-ratios (\(\beta\)) show significant differences as the sphere angular velocity increases. It is demonstrated that an emerging equatorial anticlockwise vortex emerges in a specific range of \(\varOmega\). As such, this solution matches closely with the Giesekus experimental findings. Additionally, inside the emerging inertial vortex, a contrasting positive second normal stress-difference (\(N_{2} ( \dot{\gamma} ) = \tau_{rr} - \tau_{\theta\theta}\)) region is found compared against the negative \(N_{2}\)-enveloping layer.  相似文献   

3.
Recent advances in primary acoustic gas thermometry (AGT) have revealed significant differences between temperature measurements using the International Temperature Scale of 1990, \(T_{90}\), and thermodynamic temperature, T. In 2015, we published estimates of the differences \((T-T_{90})\) from 118 K to 303 K, which showed interesting behavior in the region around the triple point of water, \(T_\mathrm{TPW}=273.16\) K. In that work, the \(T_{90}\) measurements below \(T_\mathrm{TPW}\) used a different ensemble of capsule standard platinum resistance thermometers (SPRTs) than the \(T_{90}\) measurements above \(T_\mathrm{TPW}\). In this work, we extend our earlier measurements using the same ensemble of SPRTs above and below \(T_\mathrm{TPW}\), enabling a deeper analysis of the slope \(\mathrm{d}(T-T_{90})/\mathrm{d}T\) around \(T_\mathrm{TPW}\). In this article, we present the results of seven AGT isotherms in the temperature range 258 K to 323 K. The derived values of \((T-T_{90})\) have exceptionally low uncertainties and are in good agreement with our previous data and other AGT results. We present the values \((T-T_{90})\) alongside our previous estimates, with the resistance ratios W(T) from two SPRTs which have been used across the full range 118 K to 323 K. Additionally, our measurements show discontinuities in \(\mathrm{d}(T-T_{90})/\mathrm{d}T\) at \(T_\mathrm{TPW}\) which are consistent with the slope discontinuity in the SPRT deviation functions. Since this discontinuity is by definition non-unique, and can take a range of values including zero, we suggest that mathematical representations of \((T-T_{90})\), such as those in the mise en pratique for the kelvin (Fellmuth et al. in Philos Trans R Soc A 374:20150037, 2016. doi: 10.1098/rsta.2015.0037), should have continuity of \(\mathrm{d}(T-T_{90})/\mathrm{d}T\) at \(T_\mathrm{TPW}\).  相似文献   

4.
5.
In Part I of this study (Cheng et al. in Int J Thermophys 37: 62, 2016), the reflectance and transmittance of dense ceramic plates were measured at wavelengths from 0.4 \(\upmu \hbox {m}\) to about 20 \(\upmu \hbox {m}\). The samples of \(\hbox {Al}_{2}\hbox {O}_{3}\) and AlN are semitransparent in the wavelength region from 0.4 \(\upmu \hbox {m}\) to about 7 \(\upmu \hbox {m}\), where volume scattering dominates the absorption and scattering behaviors. On the other hand, the \(\hbox {Si}_{3}\hbox {N}_{4}\) plate is opaque in the whole wavelength region. In the mid-infrared region, all samples show phonon vibration bands and surface reflection appears to be strong. The present study focuses on modeling the radiative properties and uses an inverse method to obtain the scattering and absorption coefficients of \(\hbox {Al}_{2}\hbox {O}_{3}\) and AlN in the semitransparent region from the measured directional-hemispherical reflectance and transmittance. The scattering coefficient is also predicted using Mie theory for comparison. The Lorentz oscillator model is applied to fit the reflectance spectra of AlN and \(\hbox {Si}_{3}\hbox {N}_{4}\) from 1.6 \(\upmu \hbox {m}\) to 20 \(\upmu \hbox {m}\) in order to obtain their optical constants. It is found that the phonon modes for \(\hbox {Si}_{3}\hbox {N}_{4}\) are much stronger in the polycrystalline sample studied here than in amorphous films reported previously.  相似文献   

6.
We show how to find s-PD-sets of the minimal size \(s+1\) for the \(\left[ \frac{q^n-q^u}{q-1},n,q^{n-1}-q^{u-1}\right] _q \) MacDonald q-ary codes \(C_{n,u}(q)\) where \(n \ge 3\) and \(1 \le u \le n-1\). The construction of [6] can be used and gives s-PD-sets for s up to the bound \(\lfloor \frac{q^{n-u}-1}{(n-u)(q-1)} \rfloor -1\), of effective use for u small; for \(u \ge \lfloor \frac{n}{2} \rfloor \) an alternative construction is given that applies up to a bound that depends on the maximum size of a set of vectors in \(V_u(\mathbb {F}_q)\) with each pair of vectors distance at least 3 apart.  相似文献   

7.
We prepared a lead-free ceramic (\(\hbox {Ba}_{0.85}\hbox {Ca}_{0.15})(\hbox {Ti}_{1-x}\hbox {Zr}_{x})\hbox {O}_{3}\) (BCTZ) using the conventional mixed oxide technique. The samples were prepared by an ordinary mixing and sintering technique. In this study we investigated how small amounts of \(\hbox {Zr}^{4+}\) can affect the crystal structure and microstructure as well as dielectric and piezoelectric properties of \(\hbox {BaTiO}_{3}\). X-ray diffraction analysis results indicate that no secondary phase is formed in any of the BCTZ powders for \(0 \le x \le 0.1\), suggesting that \(\hbox {Zr}^{4+}\) diffuses into \(\hbox {BaTiO}_{3}\) lattices to form a solid solution. Scanning electron microscopy micrographs revealed that the average grain size gradually increased with \(\hbox {Zr}^{4+}\) content from 9.5 \(\upmu \!\hbox {m}\) for \(x = 0.02\) to 13.5 \(\upmu \!\hbox {m}\) for \(x = 0.1\); Curie temperature decreased due to the small tetragonality caused by \(\hbox {Zr}^{4+}\) addition. Owing to the polymorphic phase transition from orthorhombic to tetragonal phase around room temperature, it was found that the composition \(x = 0.09\) showed improved electrical properties and reached preferred values of \(d_{33} = 148\) pC \(\hbox {N}^{-1}\) and \(K_{\mathrm{p}} = 27\%\).  相似文献   

8.
Ultrasound attenuation (\(\alpha \)) and velocity (V) at 9.6 MHz are measured in polycrystalline hcp \(^4\hbox {He}\). The ultrasound signal above 200 mK is linear and understood in terms of resonant vibration of dislocation segments pinned between network nodes with an average pinning length of 3.7 \(\mu \hbox {m}\), much shorter than 59 \(\mu \hbox {m}\) estimated from a shear modulus measurement. Dramatic changes in \(\alpha \) and V are observed below 200 mK. The changes are strongly dependent on temperature and are nonlinear and hysteretic. These effects result from pinning of dislocations by \(^3\hbox {He}\) impurities (nominal concentration of 0.3 ppm). The dislocation damping constant due to thermal phonons, the binding energy between dislocation and \(^3\hbox {He}\), and the average network pinning length obtained from the ultrasound data are compared with those from the shear modulus experiments.  相似文献   

9.
Previously reported, but also unpublished experimental data of our group for the viscosities of dilute krypton, xenon, and carbon dioxide, obtained in the range from 295 K to a maximum of 690 K using oscillating-disk viscometers, were re-evaluated and corrected or extrapolated to the limit of zero density (\(\eta _0\)). The combined standard uncertainty of the data is 0.1 % at room temperature and 0.2 % at higher temperatures. For krypton and carbon dioxide, our \(\eta _0\) data were compared with \(\eta _0\) values theoretically calculated using the kinetic theory and highly accurate ab initio potentials for the krypton atom pair and the CO\(_2\) molecule pair, but also with recent experimental \(\eta _0\) data from the literature. Our data for krypton differ up to 690 K from the theoretical values by \(-0.10\,\%\) to \(+0.28\,\%\), whereas that of Lin et al. (Fluid Phase Equilib. 418:198, 2016) show deviations of +(0.04 to 0.20) % at temperatures from 243 K to 393 K, in each case proving that experiment and theory are in consistent agreement. The re-evaluated \(\eta _0\) data for xenon were compared with recent data from the literature and with calculated values resulting from the HFD-B potential for xenon via the corresponding-states principle to verify that they are reference values. For carbon dioxide, \(\eta _0\) values obtained from 26 re-evaluated isotherms and from eight isotherms of Schäfer et al. (J Chem Thermodyn 89:7, 2015) between 253 K and 473 K are mutually consistent with ab initio calculated and subsequently scaled viscosity values of Hellmann (Chem Phys Lett 613:633, 2014). The isotherms of Schäfer et al. are especially suitable for determining the initial density dependence of the viscosity. Concomitantly inferred reduced second viscosity virial coefficients were checked against two theoretical approaches of the Rainwater–Friend theory.  相似文献   

10.
New measurements are reported for the isochoric heat capacity of the ionic liquid substance 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C6mim][NTf2]). These measurements extend the ranges of our earlier study (Polikhronidi et al. in Phys Chem Liq 52:657, 2014) by 5 % of the compressed liquid density and by 75 K. An adiabatic calorimeter was used to measure one-phase \((C_{\mathrm{V1}})\) liquid and two-phase \((C_{\mathrm{V2}})\) liquid + vapor isochoric heat capacities, densities \((\rho _s)\), and phase-transition temperatures \((T_s)\) of the ionic liquid (IL) substance. The combined expanded uncertainty of the density \(\rho \) and isochoric heat capacity \(C_\mathrm{V}\) measurements at the 95 % confidence level with a coverage factor of \(k = 2\) is estimated to be 0.15 % and 3 %, respectively. Measurements are concentrated in the immediate vicinity of the liquid + vapor phase-transition curve, in order to closely observe phase transitions. The present measurements and those of our earlier study are analyzed together and are presented in terms of thermodynamic properties \((T_s\), \(\rho _s\), \(C_{\mathrm{V1}}\) and \(C_{\mathrm{V2}})\) evaluated at saturation and in terms of key-derived thermodynamic properties \(C_\mathrm{P}\), \(C_\mathrm{S}\), \(W_\mathrm{S}^{{\prime }}\), \(K_{\mathrm{TS}}^{{\prime }}\), \(\left( {\partial P/\partial T} \right) _{\mathrm{V}}^{\prime }\), and \(\left( {\partial V/\partial T} \right) _\mathbf{P}^{\prime })\) on the liquid + vapor phase-transition curve. A thermodynamic relation by Yang and Yang is used to confirm the internal consistency of measured two-phase heat capacities \(C_{\mathrm{V2}} \), which are observed to fall perfectly on a line as a function of specific volume at a constant temperature. The observed linear behavior is exploited to evaluate contributions to the quantity \(C_{\mathrm{V2}} = f(V, T)\) from chemical potential \(C_{{\mathrm{V}\upmu }} =-T\frac{\mathrm{d}^{{2}}\mu }{\mathrm{d}T^{2}}\) and from vapor pressure \(C_{\mathrm{VP}} =VT\frac{\mathrm{d}^{2}P_{\mathrm{S}} }{\mathrm{d}T^{2}}\). The physical nature and specific details of the temperature and specific volume dependence of the two-phase isochoric heat capacity and some features of the other derived thermodynamic properties of IL at liquid saturation curve are considered in detail.  相似文献   

11.
A study was conducted to ascertain the effect of variation in spin speed and baking temperature on \(\upbeta \)-phase content in the spin-coated poly(vinylidene fluoride) (PVDF) thick films (\({\sim }4{-}25\,\upmu \hbox {m}\)). Development of \(\upbeta \)-phase is dependent on film stretching and crystallization temperature. Therefore, to study the development of \(\upbeta \)-phase in films, stretching is achieved by spinning and crystallization temperature is adjusted by means of baking. PVDF films are characterized using Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy. It is observed that crystallization temperature lower than \(60^{\circ }\hbox {C}\) and increase in spin speed increases the \(\upbeta \)-phase content in PVDF films. Crystallization temperature above \(60^{\circ }\hbox {C}\) reduces \(\upbeta \)-phase content and increases \(\upalpha \)-phase content. It was also observed that viscosity of the PVDF solution affects the \(\upbeta \)-phase development in films at a particular spin speed.  相似文献   

12.
We study the response of one-dimensional liquid \(^4\hbox {He}\) to weak perturbations relying on the dynamical structure factor, \(S(q,\omega )\), recently obtained via ab-initio techniques (Bertaina et al. in Phys Rev Lett 116:135302, 2016). We evaluate the drag force, \(F_\mathrm{v}\), experienced by an impurity moving along the system with velocity v and the static response function, \(\chi (q)\), describing the density modulations induced by a periodic perturbation with wave vector q.  相似文献   

13.
The layered Li-TM-\(\hbox {O}_{2}\) materials have been investigated extensively due to their application as cathodes in Li batteries. The electrical properties of these oxides can be tuned or controlled either by non-stoichiometry or substitution. Hence the thermo-transport properties of Zn-substituted \(\hbox {LiNi}_{1-x}\hbox {Zn}_{x}\hbox {O}_{2}\) for \(0 \le x \le 0.16\) have been investigated in the temperature range of 300–900 K for potential application as a high-temperature thermoelectric material. For \(x < 0.08\), the compounds were of single phase belonging to the space group R-3mH while for \(x > 0.08\) an additional minority phase, ZnO forms together with the main layered phase. All the compounds exhibit a semiconducting behaviour with electrical resistivity, varying in the range of  \(\sim 10^{-4}\) to \(10^{-2}\,\,\Omega \hbox {m}\) between 300 and 900 K. The electrical resistivity is found to increase with increasing Zn-substitution predominantly due to a decrease in the charge carrier hole mobility. The activation energy remains constant, \(\sim \)10  meV, with Zn-substitution. The Seebeck coefficient of the compounds is found to decrease with increasing temperature and increase with increasing Zn-substitution. The Seebeck coefficient decreases from \(\sim \)95 to \(35\ \upmu \hbox {V K}^{-1}\) and the corresponding power factor is \(\sim \)12\(\ \upmu \hbox {W m}^{-1}\ {\hbox {K}}^{-2}\) for the \(x = 0.16\) compound.  相似文献   

14.
We have developed films of pure polymethylmethacrylate (PMMA) (0.5, 1, 2 and 5%) and potassium permanganate \((\hbox {KMnO}_{4})\)-doped PMMA composite films of thickness (\(\sim 100\, \upmu \hbox {m}\)) using the solution-cast technique. To identify the possible change that happen to the PMMA films due to doping, the optical properties were investigated for different concentrations of \(\hbox {KMnO}_{4}\) by recording the absorbance (A) and transmittance (\(T\%\)) spectra of these films using UV–Vis spectrophotometer in the wavelength range of 300–1100 nm. From the data obtained from the optical parameters viz. absorption coefficient (\(\alpha \)), extinction coefficient (\(\kappa \)), finesse coefficient (F), refractive index (\(\eta \)), real and imaginary parts of dielectric constant (\(\varepsilon _{\mathrm{r}}\) and \(\varepsilon _{\mathrm{i}})\) and optical conductivity (\(\sigma \)) were calculated for the prepared films. The indirect optical band gap for the pure and the doped-PMMA films were also estimated.  相似文献   

15.
A theoretical study of NO adsorption on \(\hbox {Cu}_{m}\hbox {Co}_{n}\) (2 \(\le m+n \le \) 7) clusters was carried out using a density functional method. Generally, NO is absorbed at the top site via the N atom, except in \(\hbox {Cu}_{3}\hbox {NO}\) and \(\hbox {Cu}_{5}\hbox {NO}\) clusters, where NO is located at the bridge site. \(\hbox {Co}_{2}\hbox {NO}\), \(\hbox {Co}_{3}\hbox {NO}\), \(\hbox {Cu}_{2}\hbox {Co}_{2}\hbox {NO}\), \(\hbox {Co}_{5}\hbox {NO}\), \(\hbox {Cu}_{2}\hbox {Co}_{4}\hbox {NO}\) and \(\hbox {Cu}_{6}\hbox {CoNO}\) clusters have larger adsorption energies, indicating that NO of these clusters are more easily adsorbed. After adsorption, N–O bond is weakened and the activity is enhanced as a result of vibration frequency of N–O bond getting lower than that of a single NO molecule. \(\hbox {Cu}_{2}\hbox {CoNO}\), \(\hbox {Cu}_{3}\hbox {CoNO}\), \(\hbox {Cu}_{2}\hbox {Co}_{2}\hbox {NO}\), \(\hbox {Cu}_{3}\hbox {Co}_{3}\hbox {NO}\) and \(\hbox {Cu}\hbox {Co}_{5}\hbox {NO}\) clusters are more stable than their neighbours, while CuCoNO, \(\hbox {Co}_{3}\hbox {NO}\), \(\hbox {Cu}_{3}\hbox {CoNO}\), \(\hbox {Cu}_{2}\hbox {Co}_{3}\hbox {NO}\), \(\hbox {Cu}_{3}\hbox {Co}_{3}\hbox {NO}\) and \(\hbox {Cu}_{6}\)CoNO clusters display stronger chemical stability. Magnetic and electronic properties are also discussed. The magnetic moment is affected by charge transfer and the spd hybridization.  相似文献   

16.
Heat-flux sensors are widely used in industry to test building products and designs for resistance to bushfire, to test the flammability of textiles and in numerous applications such as concentrated solar collectors. In Australia, such detectors are currently calibrated by the National Measurement Institute Australia (NMIA) at low flux levels of 20 W \(\cdot \) m\(^{-2}\). Estimates of the uncertainty arising from nonlinearity at industrial levels (e.g. 50 kW \(\cdot \) m\(^{-2}\) for bushfire testing) rely on literature information. NMIA has developed a facility to characterize the linearity response of these heat-flux sensors up to 110 kW \(\cdot \) m\(^{-2}\) using a low-power \(\hbox {CO}_2\) laser and a chopped quartz tungsten–halogen lamp. The facility was validated by comparison with the conventional flux-addition method, and used to characterize several Schmidt–Boelter-type sensors. A significant nonlinear response was found, ranging from (\(3.2 \pm 0.9\))% at 40 kW \(\cdot \) m\(^{-2}\) to more than 8 % at 100 kW \(\cdot \) m\(^{-2}\). Additional measurements confirm that this is not attributable to convection effects, but due to the temperature dependence of the sensor’s responsivity.  相似文献   

17.
\(\upalpha \)-\(\hbox {LiIO}_{3}\) is an excellent optical material exhibiting strong nonlinear optical, piezoelectric and elasto-optic properties. However, its practical applications are limited by the insufficient reproducibility of the mentioned properties caused by the strong influence of the growth conditions, and, in particular, pH of the solution from which \(\upalpha \)-\(\hbox {LiIO}_{3}\) crystal is grown. Herein, we investigate to grow bulk size good quality crystals of \(\upalpha \)-\(\hbox {LiIO}_{3}\) based on the observed problems during its crystallization process. A systematic investigation was carried out to find the effect of pH on solubility, crystal growth, structural, surface and laser damage properties of \(\upalpha \)-\(\hbox {LiIO}_{3}\) single crystals. The structure and phase of \(\hbox {LiIO}_{3}\) were confirmed by powder X-ray diffractometer analysis. The functional groups of the compound were identified using Fourier transform infrared spectroscopy. Surface defects of the grown crystals were studied by etch patterns. The crystal grown at pH 10 showed 10% optical transmission enhancement in comparison to the crystals grown at pH 2. The indirect optical bandgap of the crystal was reinvestigated using ultraviolet–Visible–near-infrared transmittance spectrum. The laser damage threshold studies of the crystals grown at pH 10 reveal the higher optical radiation stability against 532 nm laser. The second-order nonlinear optical behaviour of \(\upalpha \)-\(\hbox {LiIO}_{3}\) crystals grown at different pH conditions have been investigated by using Kurtz and Perry powder technique with Nd:YAG laser pulses at the wavelength of 1064 nm.  相似文献   

18.
The new kröhnkite compound called potassium calcium-bis-hydrogen arsenate dihydrate K\(_{2}\)Ca(HAsO\(_{4})_{2}\cdot \)2H\(_{2}\)O was obtained by hydrothermal method and characterized by X-ray diffraction, infrared spectroscopy, Raman scattering, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis and optical (photoluminescence and absorption) properties. It crystallizes in the triclinic space group P\(\bar{1}\) and unit cell parameters \(a = 5.971(3)\) Å, \(b =6.634(3)\) Å, \(c = 7.856(4)\) Å, \(\alpha =104.532(9)\) \(^{\circ }\), \(\beta = 105.464(9)\) \(^{\circ }\) and \(\gamma = 109.698(9)\) \(^{\circ }\). The structure of K\(_{2}\)Ca(HAsO\(_{4})_{2}\cdot \)2H\(_{2}\)O built up from this infinite, (Ca(HAsO\(_{4})_{2}\)(H\(_{2}\)O)\(_{2})^{2+}\), was oriented along an axis resulting from the association of CaO\(_{6}\) octahedra alternating with each two HAsO\(_{4}\) tetrahedra by sharing corners. Each potassium atom links two adjacent chains by three oxygen atoms of HAsO\(_{4}\) tetrahedra. TGA and DSC have shown the absence of phase transition. The existence of vibrational modes corresponding to the kröhnkite is identified by the IR and Raman spectroscopies in the frequency ranges of 400–4000 and 20–4000 cm\(^{-1}\), respectively. The photoluminescence measurement show one peak at 507 nm, which is attributed to band–band (free electron–hole transitions) and (bound electron–hole transitions) emissions within the AsO\(_{4}\) inorganic part.  相似文献   

19.
The present paper reports the effect of B- and BN-doped \(\hbox {C}_{60}\) as catalysts for lowering the dehydrogenation energy in \(\hbox {MXH}_{4}\) clusters (M = Na and Li, X = Al and B) using density functional calculations. \(\hbox {MXH}_{4}\) interacts strongly with B-doped \(\hbox {C}_{60}\) and weakly with BN-doped \(\hbox {C}_{60}\) in comparison with pure \(\hbox {C}_{60}\) with binding energy 0.56–0.80 and 0.05–0.34 eV, respectively. The hydrogen release energy \((E_{\mathrm{HRE}})\) of \(\hbox {MXH}_{4}\) decreases sharply in the range of 38–49% when adsorbed on B-doped \(\hbox {C}_{60}\); however, with BN-doped \(\hbox {C}_{60}\) the decrease in the \(E_{\mathrm{HRE}}\) varies in the range of 6–20% as compared with pure \(\hbox {MXH}_{4}\) clusters. The hydrogen release energy of second hydrogen atom in \(\hbox {MXH}_{4}\) decreases sharply in the range of 1.7–41% for BN-doped \(\hbox {C}_{60}\) and decreases in the range of 0.2–11.3% for B-doped \(\hbox {C}_{60}\) as compared with pure \(\hbox {MXH}_{4}\) clusters. The results can be explained on the basis of charge transfer within \(\hbox {MXH}_{4}\) cluster and with the doped \(\hbox {C}_{60}\).  相似文献   

20.
Mesoporous \(\upgamma \)-alumina was synthesized by the microwave-hydrothermal process with a shorter duration time at 150\({^{\circ }}\)C/2 h followed by calcination at 550\({^{\circ }}\)C/1 h. Ag nanoparticles (AgNPs) were impregnated into \(\upgamma \)-alumina under a reducing atmosphere at 450\({^{\circ }}\)C. The synthesized product was characterized by X-ray diffraction (XRD), thermogravimetric (TG)/differential thermal analysis (DTA), X-ray photoelectron spectroscopy (XPS), \(\hbox {N}_{2}\) adsorption–desorption study, field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The BET surface area values of \(\upgamma \)-alumina and Ag-impregnated \(\upgamma \)-alumina were found to be 258 and 230 m\(^{2}\) g\(^{-1}\), respectively. FESEM images showed the formation of grain-like particles of 50–70 nm in size with a flake-like microstructure. The XRD, XPS and TEM studies confirmed the presence of Ag in the synthesized product. Catalytic properties of the product for CO oxidation was studied with the \(T_{50}\) (50% conversion) and \(T_{100}\) (100% conversion) values of 118 and 135\({^{\circ }}\)C, respectively; the enhanced values were compared with the literature reported values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号