首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aiming at the correlated and cascading failures caused by large-scale disasters,a post-disaster service restoration scheme was proposed.This scheme utilized global service bandwidth concession and the limited lifetime of local links to mitigate resource crunch in the post-disaster network.According to their bandwidth and holding time requirements,the impacted services for restoration was prioritized firstly,then jointly employed anycast and manycast routing strategies to improve the service connectivity and bandwidth resource utilization.Simulation results show that the proposed scheme can significantly reduce the service loss ratio,effectively prolong the holding time of the impacted services and decrease the data flow loss ratio in the post-disaster network.  相似文献   

2.
As the size and the complexity of optical mesh networks are continuing to grow and the severe natural disasters are occurring more frequently in recent years, multiple failures (link failures or node failures) become increasing probable. Protection strategies against these failures generally provision backup paths for working paths based on link-disjointness or node-disjointness. Compared with link-disjoint protection, node-disjoint protection means higher degree of risk isolation and can accommodate both link failures and node failures. This motivates us to propose a hybrid node-disjoint protection, named Segment and Path Shared Protection (SPSP), to provide 100% protection against arbitrary simultaneous double-node failures (the worst double-failure case). For each service connection request, SPSP first provisions backup segments for the working segments, respectively, as the primary backup resources, then provisions a single backup path for the whole working path as the second backup resource. In addition to its complete protection capability and flexible scalability for double failures, SPSP can also obtain better network load balance and resource sharing degree by dynamic link-cost adjustment and reserved backup resource sharing. Simulation results show that SPSP can achieve a shorter average recovery time than path shared protection (PSP) and higher resource utilization and lower blocking probability than segment shared protection (SSP).  相似文献   

3.
可重构柔性网络链路失效将严重影响其上承载的可重构服务承载网(RSCN)的可靠性。文章基于路径备份策略着重解决时延敏感类型RSCN的可靠性问题,并提出分阶段处理方式进一步优化备份资源消耗。在拓扑预处理阶段,根据RSCN是否支持路径分裂分别提出分裂的最小备份拓扑生成(S-MBT-Gen)算法和最小备份生成树(MBST-Gen)算法,减小备份拓扑带宽约束总量;在拓扑映射阶段,提出主备拓扑协同映射(RNM-PBT)算法,协调利用底层网络资源。仿真结果表明,本文提出的算法降低了RSCN平均资源消耗,且具有较高的请求接受率和较低的平均执行时间。  相似文献   

4.
针对现有可生存虚拟网络链路保护方法无差别对待所有虚拟链路、备份资源消耗多且故障后网络恢复时延长的问题,该文提出一种核心链路感知的可生存虚拟网络链路保护(CLA-SVNLP)方法。首先,综合考虑虚拟链路动态和静态两方面因素构建虚拟链路核心度度量模型,依据虚拟网络生存性需求,对核心度较高的虚拟链路进行备份保护;其次,将p圈引入可生存虚拟网络链路保护,依据虚拟网络特点构建p圈,为核心虚拟链路提供1:N保护,即每条核心虚拟链路平均消耗1/N条的备份链路带宽资源以减少备份链路资源消耗,并将单物理链路保护问题转化为多个p圈内的单虚拟链路保护问题;最后网络编码技术与p圈结合,将备份链路对核心虚拟链路提供的1:N保护转化为1+N保护,避免了故障后定位、检测及数据重传。仿真结果表明,该方法提高了备份资源利用率且缩短了故障后的网络恢复时延。  相似文献   

5.
The survivability of IP over WDM networks gains importance as network traffic keeps growing. Recovery at the lowest layer is fast and scalable. However, it is usually considered to provide poor network utilization. In this article we propose a resilience scheme based on recovery at the lowest layer in which intralayer and interlayer backup resource sharing is utilized to improve the network utilization. By applying interlayer backup resource sharing, we can totally depend on the reserved backup resources for fiber link failures to guarantee 100 percent recovery of IP router failures. In addition, by applying intralayer backup resource sharing, the network utilization improvement of recovery at the lowest layer is much more significant than at the highest layer. Simulations results show that the proposed scheme can efficiently improve network utilization and be even more capacity-efficient than resilience schemes based on recovery at the highest layer.  相似文献   

6.
In an optical WDM mesh network, different protection schemes (such as dedicated or shared protection) can be used to improve the service availability against network failures. However, in order to satisfy a connections service-availability requirement in a cost-effective and resource-efficient manner, we need a systematic mechanism to select a proper protection scheme for each connection request while provisioning the connection. In this paper, we propose to use connection availability as a metric to provide differentiated protection services in a wavelength-convertible WDM mesh network. We develop a mathematical model to analyze the availabilities of connections with different protection modes (i.e., unprotected, dedicated protected, or shared protected). In the shared-protection case, we investigate how a connection's availability is affected by backup resource sharing. The sharing might cause backup resource contention between several connections when multiple simultaneous (or overlapping) failures occur in the network. Using a continuous-time Markov model, we derive the conditional probability for a connection to acquire backup resources in the presence of backup resource contention. Through this model, we show how the availability of a shared-protected connection can be quantitatively computed. Based on the analytical model, we develop provisioning strategies for a given set of connection demands in which an appropriate, possibly different, level of protection is provided to each connection according to its predefined availability requirement, e.g., 0.999, 0.997. We propose integer linear programming (ILP) and heuristic approaches to provision the connections cost effectively while satisfying the connections' availability requirements. The effectiveness of our provisioning approaches is demonstrated through numerical examples. The proposed provisioning strategies inherently facilitate the service differentiation in optical WDM mesh networks.  相似文献   

7.
The future Wireless Cloud Networks (WCNs ) are required to satisfy both extremely high levels of service resilience and security assurance (i. e., Blue criteria ) by overproviding backup network resources and cryptographic protection on wireless communication respectively, as well as minimizing energy consumption (i.e., Green criteria) by switching off unnecessary resources as much as possible. There is a contradiction to satisfy both Blue and Green design criteria simultaneously. In this paper, we propose a new BlueGreen topological control scheme to leverage the wireless link connectivity for WCNs using an adaptive encryption key allocation mechanism, named as Shared Backup Path Keys (SBPK). The BlueGreen SBPK can take into account the network dependable requirements such as service resilience, security assurance and energy efficiency as a whole, so as trading off between them to find an optimal solution. Actually, this challenging problem can be modeled as a global optimization problem, where the network working and backup elements such as nodes , links , encryption keys and their energy consumption are considered as a resource, and their utilization should be minimized. The case studies confirm that there is a tradeoff optimal solution between the capacity efficiency and energy efficiency to achieve the dependable WCNs .  相似文献   

8.
Cloud services delivered by high-capacity optical datacenter networks are subject to disasters which may cause large-area failures, leading to huge data loss. Survivable service provisioning is crucial to minimize the effects of network/datacenter failures and maintain critical services in case of a disaster. We propose a novel disaster-aware service-provisioning scheme that multiplexes service over multiple paths destined to multiple servers/datacenters with manycasting. Our scheme maintains some bandwidth (i.e., degraded service) after a disaster failure vs. no service at all. We formulate this problem into a mathematical model which turns out to be an Integer Linear Program (ILP), and we provide heuristic optimization approaches as ILP is intractable for large problem instances. Numerical examples show that exploiting manycasting by intelligently selecting destinations in a risk-aware manner for service provisioning offers high level of survivability against link and node failures that may be caused by disasters and post-disaster failures at no extra cost compared to the other survivable schemes.  相似文献   

9.
Network function virtualization can significantly improve the flexibility and effectiveness of network appliances via a mapping process called service function chaining. However, the failure of any single virtualized network function causes the breakdown of the entire chain, which results in resource wastage, delays, and significant data loss. Redundancy can be used to protect network appliances; however, when failures occur, it may significantly degrade network efficiency. In addition, it is difficult to efficiently map the primary and backups to optimize the management cost and service reliability without violating the capacity, delay, and reliability constraints, which is referred to as the reliability‐aware service chaining mapping problem. In this paper, a mixed integer linear programming formulation is provided to address this problem along with a novel online algorithm that adopts the joint protection redundancy model and novel backup selection scheme. The results show that the proposed algorithm can significantly improve the request acceptance ratio and reduce the consumption of physical resources compared to existing backup algorithms.  相似文献   

10.
As service providers move more applications to their IP/MPLS (multiple protocol label switching ) backbone networks, rapid restoration upon failure becomes more and more crucial. Recently MPLS fast reroute has attracted lots of attention as it was designed to meet the needs of real-time applications, such as voice over IP. MPLS fast reroute achieves rapid restoration by computing and signaling backup label switched path (LSP) tunnels in advance and re-directing traffic as close to failure point as possible. To provide a guarantee of bandwidth protection, extra bandwidth has to be reserved on backup paths. Using path merging technique as described in IETF RFC 4090 only, the network is able to share some bandwidth on common links among backup paths of the same service LSP, i.e., so-called intra-sharing. But no solution is provided on how to share bandwidth among backup paths of different service LSPs, i.e., so-called inter-sharing. In this paper, we provide an efficient distributed bandwidth management solution. This solution allows bandwidth sharing among backup paths of the same and different service LSPs, i.e., both intra-sharing and inter-sharing, with a guarantee of bandwidth protection for any single node/link failure. We also propose an efficient algorithm for backup path selection with the associated signaling extensions for additional information distribution and collection. To evaluate our schemes, we compare them via simulation with the basic MPLS fast reroute proposal, IETF RFC 4090, on two networks. Our simulation results show that using our bandwidth management scheme can significantly reduce restoration overbuild from about 250% to about 100%, and our optimized backup path selection can further reduce restoration overbuild to about 60%.  相似文献   

11.
Protection techniques for optical networks mainly rely on pre-allocated backup bandwidth, which may not be able to provide full protection guarantee when multiple failures occur in a network. After recovering from the previous failure, if failure occurs again, unprotected or vulnerable lightpaths cannot be recovered. In this paper, the minimal backup reprovisioning (MBR) problem is studied, in which the failure-independent path protecting p-cycles (FIPP p-cycles) scheme is considered for single-node failure on WDM networks. After recovering the affected lightpaths from a node failure, the goal of the MBR is to re-arrange the protecting and available resources such that working paths can be protected against next node failure if possible. An algorithm is designed to recover the protecting capabilities of the FIPP p-cycles, unless there is no sufficient network resource. The simulation results of the proposed method are also given.  相似文献   

12.
Spare bandwidth is required for recovering the network service from network faults. However, it degrades the efficiency of network utilization. Spare bandwidth demand can be reduced significantly by letting spare bandwidth be shared among several network services. Spare bandwidth reserved on a network element can be shared by a set of network services for a network fault if they are not simultaneously affected by the network fault. A new, and more practical spare bandwidth sharing scheme, which is based on the network reliability, is proposed in this paper. In the proposed scheme, multiple link failures are allowed with a given link failure rate, and a reasonable restoration level of near 100%; while in the conventional scheme, only a single link failure, and 100% restoration level are considered. To develop the spare bandwidth sharing scheme, we first investigate the framework for evaluating the reliability of path-based network services, and then we explain the proposed spare bandwidth sharing scheme with decision parameters such as lifetime of the path, restoration level, and the maximum number of working paths which can be protected by a backup link. Simulation results show that the proposed spare bandwidth sharing scheme requires a smaller amount of spare bandwidth than the conventional scheme.  相似文献   

13.
Reliability constrained routing in QoS networks   总被引:1,自引:0,他引:1  
The issue of handling network failures is becoming increasingly important. In this paper, we address the problem of constrained routing by treating reliability as one of the QoS requirements. The problem is to create a feasible path from a given node to the destination such that the bandwidth and reliability requirements of the path are satisfied and the cost of the path is minimized (Reliability Constrained Least Cost Routing Problem). To solve the problem, we propose an approach which employs a novel concept, called partial protection, wherein backup paths are created for a selected set of domains in the network so as to meet the reliability constraints. The Partial Protection Approach (PPA) has two steps: Primary Path Creation and Backup Path Creation if necessary. To implement PPA, we propose three scalable two-pass resource reservation schemes, viz., Conservative, Optimistic, and Hybrid schemes. These schemes differ depending on whether the backup paths are created during the forward pass, reverse pass, or both. We evaluate the performance of the proposed schemes for dynamic multicast groups with different bandwidth and reliability requirements using average call acceptance rate and average tree cost as performance metrics. Our studies show that group dynamics and reliability requirements have significant impact on the performance of the schemes.  相似文献   

14.
The capacity of a telecom fiber is very high and continues to increase, due to the advances in wavelength-division multiplexing (WDM) technology. Thus, a fiber-link failure may cause huge data (and revenue) loss. Reprovisioning (or re-optimization) of backup (or protection) bandwidth is an effective approach to improve network survivability while preventing existing services from unnecessary interruption. Most research works to date focus on applying backup-resource reprovisioning when a network failure occurs, or at some particular intervals over a certain time period.   相似文献   

15.
Software‐defined networking that separates the control plane from the data plane is envisioned as a promising technology to enable resilient and flexible network management. Tolerating link failures is a fundamental problem in enhancing such network resilience in software‐defined networking. Reactive and proactive fault tolerant schemes for conventional networks may not well balance the fault recovery time and network performance, since the proactive scheme typically underutilizes resources and the reactive scheme usually incurs a longer recovery time. In this paper, we propose a cooperative link failure recovery scheme to find a fine‐grained trade‐off between resource utilization and recovery time by combining reactive and proactive methods. We formalize the problem of link failure recovery as a multiobjective optimization problem and devise a 2‐stage algorithm for it. The first stage of the algorithm guarantees connectivity restoration in an acceptable recovery interval based on fast failover feature supported in OpenFlow protocol, meanwhile it assigns virtual local area network tags to back up paths for achieving a lower memory consumption. The second stage of the algorithm guarantees the quality of service for different applications by adjusting the backup paths after rapid connectivity restoration. Extensive simulations highlight that cooperative link failure recovery scheme can satisfy both the carrier‐grade recovery requirements and quality of service requirements in terms of delay and network bandwidth.  相似文献   

16.
Survivability is of critical importance in high-speed optical communication networks. A typical approach to the design of survivable networks is through a protection scheme that pre-determines and reserves backup bandwidth considering single/double link failure scenarios. In this article, a greedy algorithm is presented to reserve backup bandwidth considering multiple (F > 2) link (SRLG) failure scenarios. A bandwidth-saving joint selection scheme of working and protection paths is presented for protection against random multiple-link failures under dynamic traffic. Simulation shows that the algorithm can achieve maximum sharing of backup bandwidth for protection against random multiple-link failure with significant amount of bandwidth saving.  相似文献   

17.
Achieving fast and bandwidth-efficient shared-path protection   总被引:4,自引:0,他引:4  
Dynamic provisioning of restorable bandwidth guaranteed paths is a challenge in the design of broad-band transport networks, especially next-generation optical networks. A common approach is called (failure-independent) path protection, whereby for every mission-critical active path to be established, a link (or node) disjoint backup path (BP) is also established. To optimize network resource utilization, shared path protection should be adopted, which often allows a new BP to share the bandwidth allocated to some existing BPs. However, it usually leads the backup paths to use too many links, with zero cost in term of additional backup bandwidth, along its route. It will violate the restoration time guarantee. In this paper, we propose novel integer linear programming (ILP) formulations by introducing two parameters (/spl epsi/ and /spl mu/) in both the sharing with complete information (SCI) scheme and the distributed partial information management (DPIM) scheme. Our results show that the proposed ILP formulations can not only improve the network resource utilization effectively, but also keep the BPs as short as possible.  相似文献   

18.
Most research to date in survivable optical network design and operation, focused on the failure of a single component such as a link or a node. A double-link failure model in which any two links in the network may fail in an arbitrary order was proposed recently in literature [1]. Three loop-back methods of recovering from double-link failures were also presented. The basic idea behind these methods is to pre-compute two backup paths for each link on the primary paths and reserve resources on these paths. Compared to protection methods for single-link failure model, the protection methods for double-link failure model require much more spare capacity. Reserving dedicated resources on every backup path at the time of establishing primary path itself would consume excessive resources. Moreover, it may not be possible to allocate dedicated resources on each of two backup paths around each link, due to the wavelength continuous constraint. In M. Sridharan et al., [2,3] we captured the various operational phases in survivable WDM networks as a single integer programming based (ILP) optimization problem. In this work, we extend our optimization framework to include double-link failures. We use the double-link failure recovery methods available in literature, employ backup multiplexing schemes to optimize capacity utilization, and provide 100% protection guarantee for double-link failure recovery. We develop rules to identify scenarios when capacity sharing among interacting demand sets is possible. Our results indicate that for the double-link failure recovery methods, the shared-link protection scheme provides 10–15% savings in capacity utilization over the dedicated link protection scheme which reserves dedicated capacity on two backup paths for each link. We provide a way of adapting the heuristic based double-link failure recovery methods into a mathematical framework, and use techniques to improve wavelength utilization for optimal capacity usage.  相似文献   

19.
Polyhedron protection realizes link protection by constructing a pre-assigned structure and allocates backup resources on a fixed polyhedron structure based on the maximum number of working resources. Taking into account both protection success rate and resource redundancy, this paper dynamically combines different polyhedron structures to allocate backup resources according to the link load, and proposes a genetic algorithm based dynamic combination of polyhedron structures (GA-DCPS) to reduce the resource consumption in the network while ensuring the protection success rate. GA-DCPS aims to minimize the consumption of wavelength resources, and uses the genetic strategy to find the polyhedron combination with the least redundancy to allocate backup resources while ensuring the success rate of service protection. Compared to using the fixed polyhedron structure with 1:m backup resource allocation, GA-DCPS can reduce resource redundancy by about 15% while ensuring complete protection against double-link failures.  相似文献   

20.
Kien Nguyen  Shigeki Yamada 《电信纪事》2016,71(11-12):639-647
The Internet may get catastrophic impacts when unexpected disasters such as earthquakes, tsunami, etc. happen. Therefore, it is necessary to equip resilient technologies for the Internet backbones in order to face challenges (e.g., link, device failures, rerouting traffic, etc.) in the disasters. The emerging software-defined networking (SDN) technology, which logically centralizes network function on a controller and remotely manages distributed SDN devices, shows a lot of potential. This paper presents an experimental feasibility study on applying SDN to wide area backbones for the disaster-resilient purpose. To show the efficiency of SDN technology in responding fast to the network situation changes, we conduct three evaluations on real SDN devices and large-scale SDN-based wide area networks (WANs) assuming disaster scenarios. In the first evaluation, we explore the proactive recovery mechanism using the fast failover on SDN devices. In the second one, we investigate the communication latency between controllers and SDN devices, which is one of the most important factors in the reactive recovery in the software-defined backbone. In the last one, we experiment the fast end-to-end reactive recovery behavior of a TCP flow in a disaster scenario. The evaluation results clearly indicate that the SDN-based WAN is technically feasible and effective for fast recovery from disasters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号